Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019635779> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2019635779 endingPage "2937" @default.
- W2019635779 startingPage "2923" @default.
- W2019635779 abstract "The problems arising when modelling counts of rare events observed in small geographical areas when overdispersion and residual spatial autocorrelation are present or anticipated are considered. Different models are presented for handling inference in this case. The different strategies are implemented using data on offender counts at the enumeration district scale for Sheffield, England and results compared. This example is chosen because previous research suggests that social processes and social composition variables are key to understanding geographical variation in offender counts which will, as a consequence, show evidence of clustering both at the scale of the enumeration district and at larger scales. This in turn leads the analyst to anticipate the presence of overdispersion and spatial autocorrelation. Diagnostic measures are described and different modelling strategies are implemented. The evidence suggests that modelling strategies based on the use of spatial random effects models or models that include spatial filters appear to work well and provide a robust basis for model inference but gaps remain in the methodology that call for further research." @default.
- W2019635779 created "2016-06-24" @default.
- W2019635779 creator A5047557932 @default.
- W2019635779 creator A5056584815 @default.
- W2019635779 creator A5085949625 @default.
- W2019635779 date "2009-06-01" @default.
- W2019635779 modified "2023-09-26" @default.
- W2019635779 title "Modelling small area counts in the presence of overdispersion and spatial autocorrelation" @default.
- W2019635779 cites W1501705986 @default.
- W2019635779 cites W1606716164 @default.
- W2019635779 cites W1964449090 @default.
- W2019635779 cites W1972257703 @default.
- W2019635779 cites W1985266721 @default.
- W2019635779 cites W1988684120 @default.
- W2019635779 cites W1991954234 @default.
- W2019635779 cites W2004014822 @default.
- W2019635779 cites W2017941065 @default.
- W2019635779 cites W2030577548 @default.
- W2019635779 cites W2034283054 @default.
- W2019635779 cites W2050771246 @default.
- W2019635779 cites W2053902250 @default.
- W2019635779 cites W2057765075 @default.
- W2019635779 cites W2063105147 @default.
- W2019635779 cites W2069236210 @default.
- W2019635779 cites W2069257308 @default.
- W2019635779 cites W2087067179 @default.
- W2019635779 cites W2115320118 @default.
- W2019635779 cites W2118898434 @default.
- W2019635779 cites W2128469638 @default.
- W2019635779 cites W2144065792 @default.
- W2019635779 cites W2145276268 @default.
- W2019635779 cites W2147854940 @default.
- W2019635779 cites W2171516726 @default.
- W2019635779 cites W2801490189 @default.
- W2019635779 cites W4243455742 @default.
- W2019635779 cites W4249638449 @default.
- W2019635779 cites W4250834793 @default.
- W2019635779 doi "https://doi.org/10.1016/j.csda.2008.08.014" @default.
- W2019635779 hasPublicationYear "2009" @default.
- W2019635779 type Work @default.
- W2019635779 sameAs 2019635779 @default.
- W2019635779 citedByCount "82" @default.
- W2019635779 countsByYear W20196357792012 @default.
- W2019635779 countsByYear W20196357792013 @default.
- W2019635779 countsByYear W20196357792014 @default.
- W2019635779 countsByYear W20196357792015 @default.
- W2019635779 countsByYear W20196357792016 @default.
- W2019635779 countsByYear W20196357792017 @default.
- W2019635779 countsByYear W20196357792018 @default.
- W2019635779 countsByYear W20196357792019 @default.
- W2019635779 countsByYear W20196357792020 @default.
- W2019635779 countsByYear W20196357792021 @default.
- W2019635779 countsByYear W20196357792022 @default.
- W2019635779 crossrefType "journal-article" @default.
- W2019635779 hasAuthorship W2019635779A5047557932 @default.
- W2019635779 hasAuthorship W2019635779A5056584815 @default.
- W2019635779 hasAuthorship W2019635779A5085949625 @default.
- W2019635779 hasConcept C100906024 @default.
- W2019635779 hasConcept C105795698 @default.
- W2019635779 hasConcept C117236510 @default.
- W2019635779 hasConcept C149782125 @default.
- W2019635779 hasConcept C159620131 @default.
- W2019635779 hasConcept C33643355 @default.
- W2019635779 hasConcept C33923547 @default.
- W2019635779 hasConcept C41008148 @default.
- W2019635779 hasConcept C5297727 @default.
- W2019635779 hasConcept C91025261 @default.
- W2019635779 hasConceptScore W2019635779C100906024 @default.
- W2019635779 hasConceptScore W2019635779C105795698 @default.
- W2019635779 hasConceptScore W2019635779C117236510 @default.
- W2019635779 hasConceptScore W2019635779C149782125 @default.
- W2019635779 hasConceptScore W2019635779C159620131 @default.
- W2019635779 hasConceptScore W2019635779C33643355 @default.
- W2019635779 hasConceptScore W2019635779C33923547 @default.
- W2019635779 hasConceptScore W2019635779C41008148 @default.
- W2019635779 hasConceptScore W2019635779C5297727 @default.
- W2019635779 hasConceptScore W2019635779C91025261 @default.
- W2019635779 hasIssue "8" @default.
- W2019635779 hasLocation W20196357791 @default.
- W2019635779 hasOpenAccess W2019635779 @default.
- W2019635779 hasPrimaryLocation W20196357791 @default.
- W2019635779 hasRelatedWork W1562077703 @default.
- W2019635779 hasRelatedWork W2019635779 @default.
- W2019635779 hasRelatedWork W2034185025 @default.
- W2019635779 hasRelatedWork W2039289399 @default.
- W2019635779 hasRelatedWork W2556931687 @default.
- W2019635779 hasRelatedWork W3029915069 @default.
- W2019635779 hasRelatedWork W3082894259 @default.
- W2019635779 hasRelatedWork W3127154874 @default.
- W2019635779 hasRelatedWork W4280505828 @default.
- W2019635779 hasRelatedWork W89074472 @default.
- W2019635779 hasVolume "53" @default.
- W2019635779 isParatext "false" @default.
- W2019635779 isRetracted "false" @default.
- W2019635779 magId "2019635779" @default.
- W2019635779 workType "article" @default.