Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019675304> ?p ?o ?g. }
- W2019675304 endingPage "2709" @default.
- W2019675304 startingPage "2690" @default.
- W2019675304 abstract "The magnetization $ensuremath{sigma}$ of a series of Pd(Mn) alloys has been measured as a function of concentration $c$ ($0.05ensuremath{-}mathrm{at}.% mathrm{Mn}ensuremath{le}censuremath{le}2.45ensuremath{-}mathrm{at}.% mathrm{Mn}$), temperature ($1.4ensuremath{le}Tensuremath{le}260$ K) and applied field ($0ensuremath{le}Hensuremath{le}210$ kOe). The average saturation moment (for $censuremath{le}0.49$-at% Mn) is ${ensuremath{mu}}_{mathrm{sat}}=7.5{ensuremath{mu}}_{B}/mathrm{Mn}$. The saturation moment is consistent with the effective moment obtained from the low-field susceptibility (which obeys the Curie-Weiss law) provided that we take $S=frac{5}{2}$ (from the specific heat) and ${g}_{mathrm{eff}}=frac{ensuremath{mu}}{S}ensuremath{approx}3$. For $censuremath{lesssim}0.23$-at.% Mn and $Tensuremath{gtrsim}3.5ensuremath{bigominus}$ the magnetization as a function of $T$ and $H$ is well described by the molecular-field model (with $S=frac{5}{2}$ and ${g}_{mathrm{eff}}ensuremath{approx}3$) without any adjustable parameters. The magnetic field dependence of the specific heat yields an independent measure of the magnetic moment of Mn, which agrees with the magnetization data, and thus also leads to an enhanced effective $g$ value. For the most concentrated alloys 210 kOe is not quite sufficient to saturate the solute magnetization. This is attributed to near-neighbor (Mn-Mn) antiferromagnetic interactions. Curie temperatures (${T}_{C}$) and Curie-Weiss temperatures ($ensuremath{bigominus}$) were measured and compared with data from the literature and with corresponding data on Pd(Fe) and Pd(Co). Up to 1 at.% the variations of ${T}_{C}$ vs $c$ are similar for Pd(Mn), Pd(Fe), and Pd(Co), and the variations of $ensuremath{bigominus}$ vs $c$ are also similar. A plot of ${ensuremath{sigma}}^{2}$ vs $frac{{H}_{i}}{ensuremath{sigma}}$ (${H}_{i}$ is the internal field) for Pd(1.3-at.% Mn) shows that the magnetic transition is very sharp with a width comparable to that of the specific-heat cusp (i.e., less than 1% of $T$). The spontaneous magnetization of three Pd(Mn) alloys was measured as a function of $T$ and the coefficient of the low-temperature ${(frac{T}{{T}_{C}})}^{frac{3}{2}}$ term yielded a value for the spin-wave stiffness constant $Densuremath{approx}0.7{T}_{C}$ AA{}$^{2}mathrm{K}$, in agreement with the results obtained by others from the magnetoresistance. The spontaneous magnetization and the high-field saturation behavior are used to estimate the energy of direct antiferromagnetic interactions between the neighboring Mn atoms ($frac{{E}_{mathrm{int}}}{{k}_{B}}ensuremath{approx}55$ K) and the number $n$ of sites involved ($nensuremath{approx}35$). The magnetic susceptibility of Pd(1-at.% Re) = 4.30ifmmodetimeselsetexttimesfi{}${10}^{ensuremath{-}6}$ emu/g at 4.2 K was determined for comparison with isoelectronic Pd(Mn) alloys." @default.
- W2019675304 created "2016-06-24" @default.
- W2019675304 creator A5019427806 @default.
- W2019675304 creator A5068229812 @default.
- W2019675304 creator A5073866402 @default.
- W2019675304 date "1975-10-01" @default.
- W2019675304 modified "2023-10-16" @default.
- W2019675304 title "Giant moment and ferromagnetism in dilute Pd(Mn) alloys" @default.
- W2019675304 cites W1505195617 @default.
- W2019675304 cites W1532761713 @default.
- W2019675304 cites W1964826881 @default.
- W2019675304 cites W1965081108 @default.
- W2019675304 cites W1966465624 @default.
- W2019675304 cites W1966758712 @default.
- W2019675304 cites W1969169057 @default.
- W2019675304 cites W1969194346 @default.
- W2019675304 cites W1974446260 @default.
- W2019675304 cites W1975333730 @default.
- W2019675304 cites W1976952795 @default.
- W2019675304 cites W1978186279 @default.
- W2019675304 cites W1978958955 @default.
- W2019675304 cites W1985909646 @default.
- W2019675304 cites W1992601919 @default.
- W2019675304 cites W1993210162 @default.
- W2019675304 cites W1996988832 @default.
- W2019675304 cites W1998219957 @default.
- W2019675304 cites W2002568048 @default.
- W2019675304 cites W2003759581 @default.
- W2019675304 cites W2004579639 @default.
- W2019675304 cites W2007136657 @default.
- W2019675304 cites W2018679381 @default.
- W2019675304 cites W2026177012 @default.
- W2019675304 cites W2027196155 @default.
- W2019675304 cites W2029051708 @default.
- W2019675304 cites W2030388836 @default.
- W2019675304 cites W2037776325 @default.
- W2019675304 cites W2041199227 @default.
- W2019675304 cites W2041516281 @default.
- W2019675304 cites W2043770717 @default.
- W2019675304 cites W2044611119 @default.
- W2019675304 cites W2049357533 @default.
- W2019675304 cites W2051544926 @default.
- W2019675304 cites W2055402680 @default.
- W2019675304 cites W2057666914 @default.
- W2019675304 cites W2064085102 @default.
- W2019675304 cites W2067605114 @default.
- W2019675304 cites W2068076169 @default.
- W2019675304 cites W2069033955 @default.
- W2019675304 cites W2090155731 @default.
- W2019675304 cites W2118485825 @default.
- W2019675304 cites W2127590845 @default.
- W2019675304 cites W2131728178 @default.
- W2019675304 cites W2167426515 @default.
- W2019675304 cites W2315309076 @default.
- W2019675304 cites W2317645401 @default.
- W2019675304 cites W2332559960 @default.
- W2019675304 doi "https://doi.org/10.1103/physrevb.12.2690" @default.
- W2019675304 hasPublicationYear "1975" @default.
- W2019675304 type Work @default.
- W2019675304 sameAs 2019675304 @default.
- W2019675304 citedByCount "68" @default.
- W2019675304 crossrefType "journal-article" @default.
- W2019675304 hasAuthorship W2019675304A5019427806 @default.
- W2019675304 hasAuthorship W2019675304A5068229812 @default.
- W2019675304 hasAuthorship W2019675304A5073866402 @default.
- W2019675304 hasConcept C114614502 @default.
- W2019675304 hasConcept C115260700 @default.
- W2019675304 hasConcept C121332964 @default.
- W2019675304 hasConcept C155355069 @default.
- W2019675304 hasConcept C26873012 @default.
- W2019675304 hasConcept C32546565 @default.
- W2019675304 hasConcept C33923547 @default.
- W2019675304 hasConcept C500440979 @default.
- W2019675304 hasConcept C54553102 @default.
- W2019675304 hasConcept C62520636 @default.
- W2019675304 hasConcept C63648874 @default.
- W2019675304 hasConcept C82217956 @default.
- W2019675304 hasConcept C9930424 @default.
- W2019675304 hasConceptScore W2019675304C114614502 @default.
- W2019675304 hasConceptScore W2019675304C115260700 @default.
- W2019675304 hasConceptScore W2019675304C121332964 @default.
- W2019675304 hasConceptScore W2019675304C155355069 @default.
- W2019675304 hasConceptScore W2019675304C26873012 @default.
- W2019675304 hasConceptScore W2019675304C32546565 @default.
- W2019675304 hasConceptScore W2019675304C33923547 @default.
- W2019675304 hasConceptScore W2019675304C500440979 @default.
- W2019675304 hasConceptScore W2019675304C54553102 @default.
- W2019675304 hasConceptScore W2019675304C62520636 @default.
- W2019675304 hasConceptScore W2019675304C63648874 @default.
- W2019675304 hasConceptScore W2019675304C82217956 @default.
- W2019675304 hasConceptScore W2019675304C9930424 @default.
- W2019675304 hasIssue "7" @default.
- W2019675304 hasLocation W20196753041 @default.
- W2019675304 hasOpenAccess W2019675304 @default.
- W2019675304 hasPrimaryLocation W20196753041 @default.
- W2019675304 hasRelatedWork W1656295933 @default.
- W2019675304 hasRelatedWork W1920782138 @default.
- W2019675304 hasRelatedWork W1979505916 @default.