Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019675483> ?p ?o ?g. }
- W2019675483 abstract "Abstract Background Prediction of disulfide bridges from protein sequences is useful for characterizing structural and functional properties of proteins. Several methods based on different machine learning algorithms have been applied to solve this problem and public domain prediction services exist. These methods are however still potentially subject to significant improvements both in terms of prediction accuracy and overall architectural complexity. Results We introduce new methods for predicting disulfide bridges from protein sequences. The methods take advantage of two new decomposition kernels for measuring the similarity between protein sequences according to the amino acid environments around cysteines. Disulfide connectivity is predicted in two passes. First, a binary classifier is trained to predict whether a given protein chain has at least one intra-chain disulfide bridge. Second, a multiclass classifier (plemented by 1-nearest neighbor) is trained to predict connectivity patterns. The two passes can be easily cascaded to obtain connectivity prediction from sequence alone. We report an extensive experimental comparison on several data sets that have been previously employed in the literature to assess the accuracy of cysteine bonding state and disulfide connectivity predictors. Conclusion We reach state-of-the-art results on bonding state prediction with a simple method that classifies chains rather than individual residues. The prediction accuracy reached by our connectivity prediction method compares favorably with respect to all but the most complex other approaches. On the other hand, our method does not need any model selection or hyperparameter tuning, a property that makes it less prone to overfitting and prediction accuracy overestimation." @default.
- W2019675483 created "2016-06-24" @default.
- W2019675483 creator A5006401943 @default.
- W2019675483 creator A5027422071 @default.
- W2019675483 creator A5031402667 @default.
- W2019675483 creator A5066187890 @default.
- W2019675483 date "2008-01-14" @default.
- W2019675483 modified "2023-10-18" @default.
- W2019675483 title "A simplified approach to disulfide connectivity prediction from protein sequences" @default.
- W2019675483 cites W1963916236 @default.
- W2019675483 cites W1984615569 @default.
- W2019675483 cites W2003127757 @default.
- W2019675483 cites W2008708467 @default.
- W2019675483 cites W2009904974 @default.
- W2019675483 cites W2013257734 @default.
- W2019675483 cites W2039890138 @default.
- W2019675483 cites W2067395459 @default.
- W2019675483 cites W2068802139 @default.
- W2019675483 cites W2082569982 @default.
- W2019675483 cites W2085750961 @default.
- W2019675483 cites W2096495474 @default.
- W2019675483 cites W2097150498 @default.
- W2019675483 cites W2108746608 @default.
- W2019675483 cites W2117524891 @default.
- W2019675483 cites W2126817143 @default.
- W2019675483 cites W2131963349 @default.
- W2019675483 cites W2137575385 @default.
- W2019675483 cites W2137995988 @default.
- W2019675483 cites W2139400169 @default.
- W2019675483 cites W2158714788 @default.
- W2019675483 cites W2159128192 @default.
- W2019675483 cites W2163526800 @default.
- W2019675483 cites W2168211076 @default.
- W2019675483 cites W3104323038 @default.
- W2019675483 doi "https://doi.org/10.1186/1471-2105-9-20" @default.
- W2019675483 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2375136" @default.
- W2019675483 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18194539" @default.
- W2019675483 hasPublicationYear "2008" @default.
- W2019675483 type Work @default.
- W2019675483 sameAs 2019675483 @default.
- W2019675483 citedByCount "20" @default.
- W2019675483 countsByYear W20196754832013 @default.
- W2019675483 countsByYear W20196754832014 @default.
- W2019675483 countsByYear W20196754832015 @default.
- W2019675483 countsByYear W20196754832021 @default.
- W2019675483 crossrefType "journal-article" @default.
- W2019675483 hasAuthorship W2019675483A5006401943 @default.
- W2019675483 hasAuthorship W2019675483A5027422071 @default.
- W2019675483 hasAuthorship W2019675483A5031402667 @default.
- W2019675483 hasAuthorship W2019675483A5066187890 @default.
- W2019675483 hasBestOaLocation W20196754831 @default.
- W2019675483 hasConcept C104317684 @default.
- W2019675483 hasConcept C111364199 @default.
- W2019675483 hasConcept C119857082 @default.
- W2019675483 hasConcept C124101348 @default.
- W2019675483 hasConcept C153180895 @default.
- W2019675483 hasConcept C154945302 @default.
- W2019675483 hasConcept C167625842 @default.
- W2019675483 hasConcept C18051474 @default.
- W2019675483 hasConcept C185592680 @default.
- W2019675483 hasConcept C22019652 @default.
- W2019675483 hasConcept C41008148 @default.
- W2019675483 hasConcept C47701112 @default.
- W2019675483 hasConcept C50644808 @default.
- W2019675483 hasConcept C55493867 @default.
- W2019675483 hasConcept C95623464 @default.
- W2019675483 hasConceptScore W2019675483C104317684 @default.
- W2019675483 hasConceptScore W2019675483C111364199 @default.
- W2019675483 hasConceptScore W2019675483C119857082 @default.
- W2019675483 hasConceptScore W2019675483C124101348 @default.
- W2019675483 hasConceptScore W2019675483C153180895 @default.
- W2019675483 hasConceptScore W2019675483C154945302 @default.
- W2019675483 hasConceptScore W2019675483C167625842 @default.
- W2019675483 hasConceptScore W2019675483C18051474 @default.
- W2019675483 hasConceptScore W2019675483C185592680 @default.
- W2019675483 hasConceptScore W2019675483C22019652 @default.
- W2019675483 hasConceptScore W2019675483C41008148 @default.
- W2019675483 hasConceptScore W2019675483C47701112 @default.
- W2019675483 hasConceptScore W2019675483C50644808 @default.
- W2019675483 hasConceptScore W2019675483C55493867 @default.
- W2019675483 hasConceptScore W2019675483C95623464 @default.
- W2019675483 hasIssue "1" @default.
- W2019675483 hasLocation W20196754831 @default.
- W2019675483 hasLocation W20196754832 @default.
- W2019675483 hasLocation W20196754833 @default.
- W2019675483 hasLocation W20196754834 @default.
- W2019675483 hasLocation W20196754835 @default.
- W2019675483 hasOpenAccess W2019675483 @default.
- W2019675483 hasPrimaryLocation W20196754831 @default.
- W2019675483 hasRelatedWork W1996541855 @default.
- W2019675483 hasRelatedWork W2767651786 @default.
- W2019675483 hasRelatedWork W2961085424 @default.
- W2019675483 hasRelatedWork W2989932438 @default.
- W2019675483 hasRelatedWork W3011996705 @default.
- W2019675483 hasRelatedWork W3099765033 @default.
- W2019675483 hasRelatedWork W3128220493 @default.
- W2019675483 hasRelatedWork W3175189414 @default.
- W2019675483 hasRelatedWork W3206592002 @default.
- W2019675483 hasRelatedWork W4210794429 @default.
- W2019675483 hasVolume "9" @default.