Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019684585> ?p ?o ?g. }
- W2019684585 endingPage "1846" @default.
- W2019684585 startingPage "1803" @default.
- W2019684585 abstract "Homoclinic bifurcations are important phenomena that cause global rearrangements of the dynamics in phase space, including changes to basins of attractions and the generation of chaotic dynamics. We consider here a homoclinic (or connecting) orbit that converges in both forward and backward time to a saddle equilibrium of a three-dimensional vector field. We assume that the saddle is such that the eigenvalues of its Jacobian are real. If such a homoclinic orbit is broken by varying a suitable parameter, then, generically, a single periodic orbit $Gamma$ bifurcates. We consider the case that the saddle quantity of the equilibrium is negative so that $Gamma$ is an attractor (rather than of saddle type). At the moment of bifurcation the two-dimensional stable manifold of the saddle, when followed along the homoclinic orbit, may form either an orientable or nonorientable surface, and one speaks of an orientable or a nonorientable homoclinic bifurcation. A change of orientability occurs at two kinds of codimension-two homoclinic bifurcations, namely, an inclination flip and an orbit flip. The stable manifold of the saddle point is neither orientable nor nonorientable at either of these bifurcations. In this paper we study how the stable manifold of the saddle organizes the phase space globally near these homoclinic bifurcations. To this end, we consider a model vector field due to Sandstede, in which the origin $mathbf{0}$ is a saddle point that undergoes the respective homoclinic bifurcations for certain choices of the parameters. We compute its global stable manifold $W^s(mathbf{0})$ via the continuation of suitable orbit segments to determine how it changes through the bifurcation in question. More specifically, we render $W^s(mathbf{0})$ as a two-dimensional surface in the three-dimensional phase space, and also consider its intersection set with a suitable sphere. We first investigate the transition through the orientable and nonorientable codimension-one homoclinic bifurcations (with negative saddle quantity); in particular, we show how the basin of attraction of the bifurcating periodic orbit $Gamma$ is created in each case. We then study the global invariant manifold $W^s(mathbf{0})$ near the transition between these two cases as given by an inclination flip and an orbit flip bifurcation. More specifically, we present two-parameter bifurcation diagrams of the two flip bifurcations with representative images, in phase space and on the sphere, of $W^s(mathbf{0})$ in relation to other relevant invariant objects. In this way, we identify the topological properties of $W^s(mathbf{0})$ in open regions of parameter space and at the bifurcations involved." @default.
- W2019684585 created "2016-06-24" @default.
- W2019684585 creator A5072817844 @default.
- W2019684585 creator A5078314587 @default.
- W2019684585 creator A5084655171 @default.
- W2019684585 date "2013-01-01" @default.
- W2019684585 modified "2023-09-26" @default.
- W2019684585 title "Global Invariant Manifolds Near Homoclinic Orbits to a Real Saddle: (Non)Orientability and Flip Bifurcation" @default.
- W2019684585 cites W1970228344 @default.
- W2019684585 cites W1973016006 @default.
- W2019684585 cites W1983099865 @default.
- W2019684585 cites W1989815255 @default.
- W2019684585 cites W1995287688 @default.
- W2019684585 cites W2006903827 @default.
- W2019684585 cites W2028296976 @default.
- W2019684585 cites W2028506871 @default.
- W2019684585 cites W2032179944 @default.
- W2019684585 cites W2038280624 @default.
- W2019684585 cites W2041160720 @default.
- W2019684585 cites W2050315416 @default.
- W2019684585 cites W2054807178 @default.
- W2019684585 cites W2063033345 @default.
- W2019684585 cites W2063858073 @default.
- W2019684585 cites W2066772436 @default.
- W2019684585 cites W2071248198 @default.
- W2019684585 cites W2071290058 @default.
- W2019684585 cites W2077011938 @default.
- W2019684585 cites W2081696580 @default.
- W2019684585 cites W2084882300 @default.
- W2019684585 cites W2091534537 @default.
- W2019684585 cites W2119779417 @default.
- W2019684585 cites W2148897094 @default.
- W2019684585 cites W2154742871 @default.
- W2019684585 cites W2163621583 @default.
- W2019684585 cites W2166634832 @default.
- W2019684585 cites W2168393226 @default.
- W2019684585 cites W2317893523 @default.
- W2019684585 cites W4241682055 @default.
- W2019684585 doi "https://doi.org/10.1137/130912542" @default.
- W2019684585 hasPublicationYear "2013" @default.
- W2019684585 type Work @default.
- W2019684585 sameAs 2019684585 @default.
- W2019684585 citedByCount "21" @default.
- W2019684585 countsByYear W20196845852014 @default.
- W2019684585 countsByYear W20196845852015 @default.
- W2019684585 countsByYear W20196845852017 @default.
- W2019684585 countsByYear W20196845852018 @default.
- W2019684585 countsByYear W20196845852019 @default.
- W2019684585 countsByYear W20196845852020 @default.
- W2019684585 countsByYear W20196845852021 @default.
- W2019684585 countsByYear W20196845852023 @default.
- W2019684585 crossrefType "journal-article" @default.
- W2019684585 hasAuthorship W2019684585A5072817844 @default.
- W2019684585 hasAuthorship W2019684585A5078314587 @default.
- W2019684585 hasAuthorship W2019684585A5084655171 @default.
- W2019684585 hasConcept C121332964 @default.
- W2019684585 hasConcept C126255220 @default.
- W2019684585 hasConcept C127413603 @default.
- W2019684585 hasConcept C134306372 @default.
- W2019684585 hasConcept C146978453 @default.
- W2019684585 hasConcept C151342819 @default.
- W2019684585 hasConcept C155405617 @default.
- W2019684585 hasConcept C158622935 @default.
- W2019684585 hasConcept C164380108 @default.
- W2019684585 hasConcept C184481792 @default.
- W2019684585 hasConcept C196644772 @default.
- W2019684585 hasConcept C200581526 @default.
- W2019684585 hasConcept C2524010 @default.
- W2019684585 hasConcept C2681867 @default.
- W2019684585 hasConcept C2777127463 @default.
- W2019684585 hasConcept C2781349735 @default.
- W2019684585 hasConcept C33923547 @default.
- W2019684585 hasConcept C50429861 @default.
- W2019684585 hasConcept C529865628 @default.
- W2019684585 hasConcept C62520636 @default.
- W2019684585 hasConcept C78519656 @default.
- W2019684585 hasConcept C91188154 @default.
- W2019684585 hasConceptScore W2019684585C121332964 @default.
- W2019684585 hasConceptScore W2019684585C126255220 @default.
- W2019684585 hasConceptScore W2019684585C127413603 @default.
- W2019684585 hasConceptScore W2019684585C134306372 @default.
- W2019684585 hasConceptScore W2019684585C146978453 @default.
- W2019684585 hasConceptScore W2019684585C151342819 @default.
- W2019684585 hasConceptScore W2019684585C155405617 @default.
- W2019684585 hasConceptScore W2019684585C158622935 @default.
- W2019684585 hasConceptScore W2019684585C164380108 @default.
- W2019684585 hasConceptScore W2019684585C184481792 @default.
- W2019684585 hasConceptScore W2019684585C196644772 @default.
- W2019684585 hasConceptScore W2019684585C200581526 @default.
- W2019684585 hasConceptScore W2019684585C2524010 @default.
- W2019684585 hasConceptScore W2019684585C2681867 @default.
- W2019684585 hasConceptScore W2019684585C2777127463 @default.
- W2019684585 hasConceptScore W2019684585C2781349735 @default.
- W2019684585 hasConceptScore W2019684585C33923547 @default.
- W2019684585 hasConceptScore W2019684585C50429861 @default.
- W2019684585 hasConceptScore W2019684585C529865628 @default.
- W2019684585 hasConceptScore W2019684585C62520636 @default.
- W2019684585 hasConceptScore W2019684585C78519656 @default.