Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019696307> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2019696307 endingPage "90" @default.
- W2019696307 startingPage "85" @default.
- W2019696307 abstract "This paper proposes an artificial neural network (ANN) based feeder loss analysis for distribution system analysis. The functional-link network model is examined to form the artificial neural network architecture to derive various loss calculation models for distribution feeders with different configurations. The ANN is a feedforward network that uses a standard back-propagation algorithm to adjust the weights on the connection path between any two processing elements. The typical daily load curve of the study feeder for each season is derived to field test data. A three-phase load flow program is then executed to create the ANN training sets to solve the exact feeder loss. A sensitivity analysis is performed to determine the key factors of feeder loss, which are feeder loading and power factor, primary and secondary conductor length, and transformer capacity. The above key factors form the variables of the ANN input layer. By applying the artificial neural network with pattern recognition capability, this study has developed the seasonal loss calculation models for both an overhead and an underground distribution feeder. Two practical feeders in the Taiwan Power Company (Taipower) distribution system have been selected for computer simulation to demonstrate the effectiveness and accuracy of the proposed ANN loss models. By comparing the loss models derived by the conventional regression technique, it is found that the proposed loss models can estimate feeder loss in a very effective manner and provide a better tool for distribution engineers to enhance system operation efficiency." @default.
- W2019696307 created "2016-06-24" @default.
- W2019696307 creator A5004285281 @default.
- W2019696307 creator A5036670651 @default.
- W2019696307 creator A5039691082 @default.
- W2019696307 creator A5088274727 @default.
- W2019696307 date "1995-08-01" @default.
- W2019696307 modified "2023-09-26" @default.
- W2019696307 title "Distribution feeder loss analysis by using an artificial neural network" @default.
- W2019696307 cites W1969715074 @default.
- W2019696307 cites W1984829309 @default.
- W2019696307 cites W2038348076 @default.
- W2019696307 cites W2042579914 @default.
- W2019696307 cites W2087405273 @default.
- W2019696307 cites W2097347811 @default.
- W2019696307 cites W2108416774 @default.
- W2019696307 cites W2121007765 @default.
- W2019696307 cites W2136954033 @default.
- W2019696307 cites W2151637825 @default.
- W2019696307 cites W4232968134 @default.
- W2019696307 cites W4251425472 @default.
- W2019696307 cites W9499718 @default.
- W2019696307 doi "https://doi.org/10.1016/0378-7796(95)00959-x" @default.
- W2019696307 hasPublicationYear "1995" @default.
- W2019696307 type Work @default.
- W2019696307 sameAs 2019696307 @default.
- W2019696307 citedByCount "12" @default.
- W2019696307 countsByYear W20196963072013 @default.
- W2019696307 countsByYear W20196963072020 @default.
- W2019696307 countsByYear W20196963072021 @default.
- W2019696307 countsByYear W20196963072022 @default.
- W2019696307 countsByYear W20196963072023 @default.
- W2019696307 crossrefType "journal-article" @default.
- W2019696307 hasAuthorship W2019696307A5004285281 @default.
- W2019696307 hasAuthorship W2019696307A5036670651 @default.
- W2019696307 hasAuthorship W2019696307A5039691082 @default.
- W2019696307 hasAuthorship W2019696307A5088274727 @default.
- W2019696307 hasConcept C110121322 @default.
- W2019696307 hasConcept C134306372 @default.
- W2019696307 hasConcept C154945302 @default.
- W2019696307 hasConcept C33923547 @default.
- W2019696307 hasConcept C41008148 @default.
- W2019696307 hasConcept C50644808 @default.
- W2019696307 hasConceptScore W2019696307C110121322 @default.
- W2019696307 hasConceptScore W2019696307C134306372 @default.
- W2019696307 hasConceptScore W2019696307C154945302 @default.
- W2019696307 hasConceptScore W2019696307C33923547 @default.
- W2019696307 hasConceptScore W2019696307C41008148 @default.
- W2019696307 hasConceptScore W2019696307C50644808 @default.
- W2019696307 hasIssue "2" @default.
- W2019696307 hasLocation W20196963071 @default.
- W2019696307 hasOpenAccess W2019696307 @default.
- W2019696307 hasPrimaryLocation W20196963071 @default.
- W2019696307 hasRelatedWork W2358668433 @default.
- W2019696307 hasRelatedWork W2376932109 @default.
- W2019696307 hasRelatedWork W2386387936 @default.
- W2019696307 hasRelatedWork W2390279801 @default.
- W2019696307 hasRelatedWork W2748952813 @default.
- W2019696307 hasRelatedWork W2899084033 @default.
- W2019696307 hasRelatedWork W3001020386 @default.
- W2019696307 hasRelatedWork W4362499384 @default.
- W2019696307 hasRelatedWork W644753246 @default.
- W2019696307 hasRelatedWork W1629725936 @default.
- W2019696307 hasVolume "34" @default.
- W2019696307 isParatext "false" @default.
- W2019696307 isRetracted "false" @default.
- W2019696307 magId "2019696307" @default.
- W2019696307 workType "article" @default.