Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019750470> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2019750470 abstract "Mammography is the most effective method for early detection of breast cancer. However, the positive predictive value for classification of malignant and benign lesion from mammographic images is not very high. Clinical studies have shown that most biopsies for cancer are very low, between 15% and 30%. It is important to increase the diagnostic accuracy by improving the positive predictive value to reduce the number of unnecessary biopsies. In this paper, a new classification method was proposed to distinguish malignant from benign masses in mammography by Support Vector Machine (SVM) method. Thirteen features were selected based on receiver operating characteristic (ROC) analysis of classification using individual feature. These features include four shape features, two gradient features and seven Laws features. With these features, SVM was used to classify the masses into two categories, benign and malignant, in which a Gaussian kernel and sequential minimal optimization learning technique are performed. The data set used in this study consists of 193 cases, in which there are 96 benign cases and 97 malignant cases. The leave-one-out evaluation of SVM classifier was taken. The results show that the positive predict value of the presented method is 81.6% with the sensitivity of 83.7% and the false-positive rate of 30.2%. It demonstrated that the SVM-based classifier is effective in mass classification." @default.
- W2019750470 created "2016-06-24" @default.
- W2019750470 creator A5006457653 @default.
- W2019750470 creator A5053211631 @default.
- W2019750470 creator A5060335824 @default.
- W2019750470 creator A5076042378 @default.
- W2019750470 creator A5008488820 @default.
- W2019750470 date "2003-05-16" @default.
- W2019750470 modified "2023-09-27" @default.
- W2019750470 title "Classification of masses on mammograms using support vector machine" @default.
- W2019750470 doi "https://doi.org/10.1117/12.481142" @default.
- W2019750470 hasPublicationYear "2003" @default.
- W2019750470 type Work @default.
- W2019750470 sameAs 2019750470 @default.
- W2019750470 citedByCount "4" @default.
- W2019750470 countsByYear W20197504702021 @default.
- W2019750470 countsByYear W20197504702023 @default.
- W2019750470 crossrefType "proceedings-article" @default.
- W2019750470 hasAuthorship W2019750470A5006457653 @default.
- W2019750470 hasAuthorship W2019750470A5008488820 @default.
- W2019750470 hasAuthorship W2019750470A5053211631 @default.
- W2019750470 hasAuthorship W2019750470A5060335824 @default.
- W2019750470 hasAuthorship W2019750470A5076042378 @default.
- W2019750470 hasConcept C115961682 @default.
- W2019750470 hasConcept C119857082 @default.
- W2019750470 hasConcept C121608353 @default.
- W2019750470 hasConcept C12267149 @default.
- W2019750470 hasConcept C126322002 @default.
- W2019750470 hasConcept C153180895 @default.
- W2019750470 hasConcept C154945302 @default.
- W2019750470 hasConcept C2780472235 @default.
- W2019750470 hasConcept C41008148 @default.
- W2019750470 hasConcept C52622490 @default.
- W2019750470 hasConcept C530470458 @default.
- W2019750470 hasConcept C58471807 @default.
- W2019750470 hasConcept C71924100 @default.
- W2019750470 hasConcept C75294576 @default.
- W2019750470 hasConcept C83665646 @default.
- W2019750470 hasConcept C95623464 @default.
- W2019750470 hasConcept C95922358 @default.
- W2019750470 hasConceptScore W2019750470C115961682 @default.
- W2019750470 hasConceptScore W2019750470C119857082 @default.
- W2019750470 hasConceptScore W2019750470C121608353 @default.
- W2019750470 hasConceptScore W2019750470C12267149 @default.
- W2019750470 hasConceptScore W2019750470C126322002 @default.
- W2019750470 hasConceptScore W2019750470C153180895 @default.
- W2019750470 hasConceptScore W2019750470C154945302 @default.
- W2019750470 hasConceptScore W2019750470C2780472235 @default.
- W2019750470 hasConceptScore W2019750470C41008148 @default.
- W2019750470 hasConceptScore W2019750470C52622490 @default.
- W2019750470 hasConceptScore W2019750470C530470458 @default.
- W2019750470 hasConceptScore W2019750470C58471807 @default.
- W2019750470 hasConceptScore W2019750470C71924100 @default.
- W2019750470 hasConceptScore W2019750470C75294576 @default.
- W2019750470 hasConceptScore W2019750470C83665646 @default.
- W2019750470 hasConceptScore W2019750470C95623464 @default.
- W2019750470 hasConceptScore W2019750470C95922358 @default.
- W2019750470 hasLocation W20197504701 @default.
- W2019750470 hasOpenAccess W2019750470 @default.
- W2019750470 hasPrimaryLocation W20197504701 @default.
- W2019750470 hasRelatedWork W2041636156 @default.
- W2019750470 hasRelatedWork W2111137711 @default.
- W2019750470 hasRelatedWork W2114586818 @default.
- W2019750470 hasRelatedWork W2153189372 @default.
- W2019750470 hasRelatedWork W2160451891 @default.
- W2019750470 hasRelatedWork W2293477903 @default.
- W2019750470 hasRelatedWork W2433029016 @default.
- W2019750470 hasRelatedWork W2807311372 @default.
- W2019750470 hasRelatedWork W2905846897 @default.
- W2019750470 hasRelatedWork W2187500075 @default.
- W2019750470 isParatext "false" @default.
- W2019750470 isRetracted "false" @default.
- W2019750470 magId "2019750470" @default.
- W2019750470 workType "article" @default.