Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019759143> ?p ?o ?g. }
- W2019759143 endingPage "284" @default.
- W2019759143 startingPage "275" @default.
- W2019759143 abstract "Digital investigation methods are becoming more and more important due to the proliferation of digital crimes and crimes involving digital evidence. Network forensics is a research area that gathers evidence by collecting and analysing network traffic data logs. This analysis can be a difficult process, especially because of the high variability of these attacks and large amount of data. Therefore, software tools that can help with these digital investigations are in great demand. In this paper, a novel approach to analysing and visualising network traffic data based on growing hierarchical self-organising maps (GHSOM) is presented. The self-organising map (SOM) has been shown to be successful for the analysis of highly-dimensional input data in data mining applications as well as for data visualisation in a more intuitive and understandable manner. However, the SOM has some problems related to its static topology and its inability to represent hierarchical relationships in the input data. The GHSOM tries to overcome these limitations by generating a hierarchical architecture that is automatically determined according to the input data and reflects the inherent hierarchical relationships among them. Moreover, the proposed GHSOM has been modified to correctly treat the qualitative features that are present in the traffic data in addition to the quantitative features. Experimental results show that this approach can be very useful for a better understanding of network traffic data, making it easier to search for evidence of attacks or anomalous behaviour in a network environment." @default.
- W2019759143 created "2016-06-24" @default.
- W2019759143 creator A5030510462 @default.
- W2019759143 creator A5055283205 @default.
- W2019759143 creator A5057466819 @default.
- W2019759143 creator A5081279086 @default.
- W2019759143 creator A5085558846 @default.
- W2019759143 date "2012-08-01" @default.
- W2019759143 modified "2023-10-10" @default.
- W2019759143 title "Application of growing hierarchical SOM for visualisation of network forensics traffic data" @default.
- W2019759143 cites W1539451764 @default.
- W2019759143 cites W1964888768 @default.
- W2019759143 cites W1968043276 @default.
- W2019759143 cites W1977185509 @default.
- W2019759143 cites W1986678460 @default.
- W2019759143 cites W1992419399 @default.
- W2019759143 cites W1994409504 @default.
- W2019759143 cites W2006493416 @default.
- W2019759143 cites W2010573219 @default.
- W2019759143 cites W2017543213 @default.
- W2019759143 cites W2024101422 @default.
- W2019759143 cites W2088709281 @default.
- W2019759143 cites W2110719115 @default.
- W2019759143 cites W2122473047 @default.
- W2019759143 cites W2139733965 @default.
- W2019759143 cites W2146386046 @default.
- W2019759143 cites W65738273 @default.
- W2019759143 doi "https://doi.org/10.1016/j.neunet.2012.02.021" @default.
- W2019759143 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22402325" @default.
- W2019759143 hasPublicationYear "2012" @default.
- W2019759143 type Work @default.
- W2019759143 sameAs 2019759143 @default.
- W2019759143 citedByCount "30" @default.
- W2019759143 countsByYear W20197591432012 @default.
- W2019759143 countsByYear W20197591432013 @default.
- W2019759143 countsByYear W20197591432014 @default.
- W2019759143 countsByYear W20197591432015 @default.
- W2019759143 countsByYear W20197591432016 @default.
- W2019759143 countsByYear W20197591432017 @default.
- W2019759143 countsByYear W20197591432018 @default.
- W2019759143 countsByYear W20197591432019 @default.
- W2019759143 countsByYear W20197591432020 @default.
- W2019759143 countsByYear W20197591432022 @default.
- W2019759143 countsByYear W20197591432023 @default.
- W2019759143 crossrefType "journal-article" @default.
- W2019759143 hasAuthorship W2019759143A5030510462 @default.
- W2019759143 hasAuthorship W2019759143A5055283205 @default.
- W2019759143 hasAuthorship W2019759143A5057466819 @default.
- W2019759143 hasAuthorship W2019759143A5081279086 @default.
- W2019759143 hasAuthorship W2019759143A5085558846 @default.
- W2019759143 hasConcept C111168008 @default.
- W2019759143 hasConcept C111919701 @default.
- W2019759143 hasConcept C119857082 @default.
- W2019759143 hasConcept C124101348 @default.
- W2019759143 hasConcept C172367668 @default.
- W2019759143 hasConcept C199360897 @default.
- W2019759143 hasConcept C2522767166 @default.
- W2019759143 hasConcept C2777904410 @default.
- W2019759143 hasConcept C2778864079 @default.
- W2019759143 hasConcept C31258907 @default.
- W2019759143 hasConcept C36464697 @default.
- W2019759143 hasConcept C38652104 @default.
- W2019759143 hasConcept C41008148 @default.
- W2019759143 hasConcept C50644808 @default.
- W2019759143 hasConcept C50747538 @default.
- W2019759143 hasConcept C557945733 @default.
- W2019759143 hasConcept C84418412 @default.
- W2019759143 hasConcept C98045186 @default.
- W2019759143 hasConceptScore W2019759143C111168008 @default.
- W2019759143 hasConceptScore W2019759143C111919701 @default.
- W2019759143 hasConceptScore W2019759143C119857082 @default.
- W2019759143 hasConceptScore W2019759143C124101348 @default.
- W2019759143 hasConceptScore W2019759143C172367668 @default.
- W2019759143 hasConceptScore W2019759143C199360897 @default.
- W2019759143 hasConceptScore W2019759143C2522767166 @default.
- W2019759143 hasConceptScore W2019759143C2777904410 @default.
- W2019759143 hasConceptScore W2019759143C2778864079 @default.
- W2019759143 hasConceptScore W2019759143C31258907 @default.
- W2019759143 hasConceptScore W2019759143C36464697 @default.
- W2019759143 hasConceptScore W2019759143C38652104 @default.
- W2019759143 hasConceptScore W2019759143C41008148 @default.
- W2019759143 hasConceptScore W2019759143C50644808 @default.
- W2019759143 hasConceptScore W2019759143C50747538 @default.
- W2019759143 hasConceptScore W2019759143C557945733 @default.
- W2019759143 hasConceptScore W2019759143C84418412 @default.
- W2019759143 hasConceptScore W2019759143C98045186 @default.
- W2019759143 hasLocation W20197591431 @default.
- W2019759143 hasLocation W20197591432 @default.
- W2019759143 hasOpenAccess W2019759143 @default.
- W2019759143 hasPrimaryLocation W20197591431 @default.
- W2019759143 hasRelatedWork W1500698787 @default.
- W2019759143 hasRelatedWork W188028618 @default.
- W2019759143 hasRelatedWork W1970399788 @default.
- W2019759143 hasRelatedWork W2161391695 @default.
- W2019759143 hasRelatedWork W2489557937 @default.
- W2019759143 hasRelatedWork W2895228238 @default.
- W2019759143 hasRelatedWork W2972427363 @default.
- W2019759143 hasRelatedWork W4238452393 @default.