Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019760075> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2019760075 abstract "Facial expression recognition (FER) is important for robots and computers to achieve natural interaction with human. Over the years, researchers have proposed different feature descriptors, implemented different classification methods, and carried out test experiments on different datasets in realizing an automatic FER system. While achieving good performance, the most efficient feature space and classification method for FER remain unknown due to lack of comparison study. We performed comprehensive comparison experiments with five popular feature spaces in computer vision field and seven classification methods with four unique facial expression datasets. Our contributions in this work includes: (1) identified most efficient feature space for FER, (2) investigated effect of image resolutions on FER performances, and (3) obtained best FER performance by using AdaBoost algorithm for feature selection and Support Vector Machine for image classification." @default.
- W2019760075 created "2016-06-24" @default.
- W2019760075 creator A5012762510 @default.
- W2019760075 creator A5057394529 @default.
- W2019760075 date "2013-12-01" @default.
- W2019760075 modified "2023-10-03" @default.
- W2019760075 title "A comparison study of feature spaces and classification methods for facial expression recognition" @default.
- W2019760075 cites W1519333772 @default.
- W2019760075 cites W1971616954 @default.
- W2019760075 cites W1988790447 @default.
- W2019760075 cites W2002825112 @default.
- W2019760075 cites W2006500012 @default.
- W2019760075 cites W201478411 @default.
- W2019760075 cites W2019085623 @default.
- W2019760075 cites W2035161948 @default.
- W2019760075 cites W2096044434 @default.
- W2019760075 cites W2097290407 @default.
- W2019760075 cites W2103943262 @default.
- W2019760075 cites W2109774206 @default.
- W2019760075 cites W2115763357 @default.
- W2019760075 cites W2145310492 @default.
- W2019760075 cites W2159668072 @default.
- W2019760075 cites W2161969291 @default.
- W2019760075 cites W2164598857 @default.
- W2019760075 cites W4239510810 @default.
- W2019760075 doi "https://doi.org/10.1109/robio.2013.6739643" @default.
- W2019760075 hasPublicationYear "2013" @default.
- W2019760075 type Work @default.
- W2019760075 sameAs 2019760075 @default.
- W2019760075 citedByCount "9" @default.
- W2019760075 countsByYear W20197600752014 @default.
- W2019760075 countsByYear W20197600752015 @default.
- W2019760075 countsByYear W20197600752016 @default.
- W2019760075 countsByYear W20197600752017 @default.
- W2019760075 countsByYear W20197600752018 @default.
- W2019760075 countsByYear W20197600752019 @default.
- W2019760075 countsByYear W20197600752020 @default.
- W2019760075 countsByYear W20197600752023 @default.
- W2019760075 crossrefType "proceedings-article" @default.
- W2019760075 hasAuthorship W2019760075A5012762510 @default.
- W2019760075 hasAuthorship W2019760075A5057394529 @default.
- W2019760075 hasConcept C138885662 @default.
- W2019760075 hasConcept C153180895 @default.
- W2019760075 hasConcept C154945302 @default.
- W2019760075 hasConcept C195704467 @default.
- W2019760075 hasConcept C199360897 @default.
- W2019760075 hasConcept C2776401178 @default.
- W2019760075 hasConcept C28490314 @default.
- W2019760075 hasConcept C2987714656 @default.
- W2019760075 hasConcept C31510193 @default.
- W2019760075 hasConcept C41008148 @default.
- W2019760075 hasConcept C41895202 @default.
- W2019760075 hasConcept C52622490 @default.
- W2019760075 hasConcept C90559484 @default.
- W2019760075 hasConceptScore W2019760075C138885662 @default.
- W2019760075 hasConceptScore W2019760075C153180895 @default.
- W2019760075 hasConceptScore W2019760075C154945302 @default.
- W2019760075 hasConceptScore W2019760075C195704467 @default.
- W2019760075 hasConceptScore W2019760075C199360897 @default.
- W2019760075 hasConceptScore W2019760075C2776401178 @default.
- W2019760075 hasConceptScore W2019760075C28490314 @default.
- W2019760075 hasConceptScore W2019760075C2987714656 @default.
- W2019760075 hasConceptScore W2019760075C31510193 @default.
- W2019760075 hasConceptScore W2019760075C41008148 @default.
- W2019760075 hasConceptScore W2019760075C41895202 @default.
- W2019760075 hasConceptScore W2019760075C52622490 @default.
- W2019760075 hasConceptScore W2019760075C90559484 @default.
- W2019760075 hasLocation W20197600751 @default.
- W2019760075 hasOpenAccess W2019760075 @default.
- W2019760075 hasPrimaryLocation W20197600751 @default.
- W2019760075 hasRelatedWork W1497005071 @default.
- W2019760075 hasRelatedWork W1982770690 @default.
- W2019760075 hasRelatedWork W2016461833 @default.
- W2019760075 hasRelatedWork W2033909204 @default.
- W2019760075 hasRelatedWork W2133052125 @default.
- W2019760075 hasRelatedWork W2140205990 @default.
- W2019760075 hasRelatedWork W2183241425 @default.
- W2019760075 hasRelatedWork W2586466776 @default.
- W2019760075 hasRelatedWork W3000095492 @default.
- W2019760075 hasRelatedWork W4220945658 @default.
- W2019760075 isParatext "false" @default.
- W2019760075 isRetracted "false" @default.
- W2019760075 magId "2019760075" @default.
- W2019760075 workType "article" @default.