Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019771222> ?p ?o ?g. }
- W2019771222 endingPage "75" @default.
- W2019771222 startingPage "63" @default.
- W2019771222 abstract "Due to a major shortage of nurses in the U.S., future healthcare service robots are expected to be used in tasks involving direct interaction with patients. Consequently, there is a need to design nursing robots with the capability to detect and respond to patient emotional states and to facilitate positive experiences in healthcare. The objective of this study was to develop a new computational algorithm for accurate patient emotional state classification in interaction with nursing robots during medical service. A simulated medicine delivery experiment was conducted at two nursing homes using a robot with different human-like features. Physiological signals, including heart rate (HR) and galvanic skin response (GSR), as well as subjective ratings of valence (happy-unhappy) and arousal (excited-bored) were collected on elderly residents. A three-stage emotional state classification algorithm was applied to these data, including: (1) physiological feature extraction; (2) statistical-based feature selection; and (3) a machine-learning model of emotional states. A pre-processed HR signal was used. GSR signals were nonstationary and noisy and were further processed using wavelet analysis. A set of wavelet coefficients, representing GSR features, was used as a basis for current emotional state classification. Arousal and valence were significantly explained by statistical features of the HR signal and GSR wavelet features. Wavelet-based de-noising of GSR signals led to an increase in the percentage of correct classifications of emotional states and clearer relationships among the physiological response and arousal and valence. The new algorithm may serve as an effective method for future service robot real-time detection of patient emotional states and behavior adaptation to promote positive healthcare experiences." @default.
- W2019771222 created "2016-06-24" @default.
- W2019771222 creator A5029037575 @default.
- W2019771222 creator A5075585171 @default.
- W2019771222 date "2013-01-01" @default.
- W2019771222 modified "2023-10-14" @default.
- W2019771222 title "Emotional State Classification in Patient–Robot Interaction Using Wavelet Analysis and Statistics-Based Feature Selection" @default.
- W2019771222 cites W1515990995 @default.
- W2019771222 cites W1533318183 @default.
- W2019771222 cites W1584471057 @default.
- W2019771222 cites W1821352908 @default.
- W2019771222 cites W1963691065 @default.
- W2019771222 cites W1964751118 @default.
- W2019771222 cites W1966797434 @default.
- W2019771222 cites W1981219199 @default.
- W2019771222 cites W1981799567 @default.
- W2019771222 cites W1989104072 @default.
- W2019771222 cites W1989976960 @default.
- W2019771222 cites W2007098914 @default.
- W2019771222 cites W2007461783 @default.
- W2019771222 cites W2053029502 @default.
- W2019771222 cites W2064149108 @default.
- W2019771222 cites W2073779083 @default.
- W2019771222 cites W2080126518 @default.
- W2019771222 cites W2080795763 @default.
- W2019771222 cites W2084397606 @default.
- W2019771222 cites W2092804630 @default.
- W2019771222 cites W2097340087 @default.
- W2019771222 cites W2104126273 @default.
- W2019771222 cites W2111438996 @default.
- W2019771222 cites W2126292754 @default.
- W2019771222 cites W2132311854 @default.
- W2019771222 cites W2133589238 @default.
- W2019771222 cites W2137647199 @default.
- W2019771222 cites W2143969506 @default.
- W2019771222 cites W2145710484 @default.
- W2019771222 cites W2149628368 @default.
- W2019771222 cites W2167557160 @default.
- W2019771222 cites W4294877277 @default.
- W2019771222 doi "https://doi.org/10.1109/tsmca.2012.2210408" @default.
- W2019771222 hasPublicationYear "2013" @default.
- W2019771222 type Work @default.
- W2019771222 sameAs 2019771222 @default.
- W2019771222 citedByCount "92" @default.
- W2019771222 countsByYear W20197712222013 @default.
- W2019771222 countsByYear W20197712222014 @default.
- W2019771222 countsByYear W20197712222015 @default.
- W2019771222 countsByYear W20197712222016 @default.
- W2019771222 countsByYear W20197712222017 @default.
- W2019771222 countsByYear W20197712222018 @default.
- W2019771222 countsByYear W20197712222019 @default.
- W2019771222 countsByYear W20197712222020 @default.
- W2019771222 countsByYear W20197712222021 @default.
- W2019771222 countsByYear W20197712222022 @default.
- W2019771222 countsByYear W20197712222023 @default.
- W2019771222 crossrefType "journal-article" @default.
- W2019771222 hasAuthorship W2019771222A5029037575 @default.
- W2019771222 hasAuthorship W2019771222A5075585171 @default.
- W2019771222 hasConcept C119857082 @default.
- W2019771222 hasConcept C121332964 @default.
- W2019771222 hasConcept C138885662 @default.
- W2019771222 hasConcept C148483581 @default.
- W2019771222 hasConcept C153180895 @default.
- W2019771222 hasConcept C154945302 @default.
- W2019771222 hasConcept C15744967 @default.
- W2019771222 hasConcept C168900304 @default.
- W2019771222 hasConcept C2776401178 @default.
- W2019771222 hasConcept C28490314 @default.
- W2019771222 hasConcept C36951298 @default.
- W2019771222 hasConcept C41008148 @default.
- W2019771222 hasConcept C41895202 @default.
- W2019771222 hasConcept C47432892 @default.
- W2019771222 hasConcept C52622490 @default.
- W2019771222 hasConcept C62520636 @default.
- W2019771222 hasConcept C77805123 @default.
- W2019771222 hasConcept C90509273 @default.
- W2019771222 hasConceptScore W2019771222C119857082 @default.
- W2019771222 hasConceptScore W2019771222C121332964 @default.
- W2019771222 hasConceptScore W2019771222C138885662 @default.
- W2019771222 hasConceptScore W2019771222C148483581 @default.
- W2019771222 hasConceptScore W2019771222C153180895 @default.
- W2019771222 hasConceptScore W2019771222C154945302 @default.
- W2019771222 hasConceptScore W2019771222C15744967 @default.
- W2019771222 hasConceptScore W2019771222C168900304 @default.
- W2019771222 hasConceptScore W2019771222C2776401178 @default.
- W2019771222 hasConceptScore W2019771222C28490314 @default.
- W2019771222 hasConceptScore W2019771222C36951298 @default.
- W2019771222 hasConceptScore W2019771222C41008148 @default.
- W2019771222 hasConceptScore W2019771222C41895202 @default.
- W2019771222 hasConceptScore W2019771222C47432892 @default.
- W2019771222 hasConceptScore W2019771222C52622490 @default.
- W2019771222 hasConceptScore W2019771222C62520636 @default.
- W2019771222 hasConceptScore W2019771222C77805123 @default.
- W2019771222 hasConceptScore W2019771222C90509273 @default.
- W2019771222 hasIssue "1" @default.
- W2019771222 hasLocation W20197712221 @default.
- W2019771222 hasOpenAccess W2019771222 @default.
- W2019771222 hasPrimaryLocation W20197712221 @default.