Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019777260> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2019777260 endingPage "552" @default.
- W2019777260 startingPage "542" @default.
- W2019777260 abstract "Abstract This paper employs ANN (Artificial Neural Network) models to estimate GHI (global horizontal irradiance) for three major cities in the UAE (United Arab Emirates), namely Abu Dhabi, Dubai and Al-Ain. City data are then used to develop a comprehensive global GHI model for other nearby locations in the UAE. The ANN models use MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) techniques with comprehensive training algorithms, architectures, and different combinations of inputs. The UAE models are tested and validated against individual city models and data available from the UAE Solar Atlas with good agreement as attested by the computed statistical error parameters. The optimal ANN model is MLP-based and requires four mean daily weather parameters; namely, maximum temperature, wind speed, sunshine hours, and relative humidity. The computed statistical error parameters for the optimal MLP-ANN model in relation to the measured three-cities mean data (referred to as UAE data) are MBE (mean bias error) = −0.0003 kWh/m 2 , RMSE = 0.179 kWh/m 2 , R 2 = 99%, NSE (Nash-Sutcliffe model Efficiency coefficient) = 99%, and t-statistic = 0.005 at 5% significance level. Results prove the suitability of the ANN models for estimating the monthly mean daily GHI in different locations of the UAE." @default.
- W2019777260 created "2016-06-24" @default.
- W2019777260 creator A5016788936 @default.
- W2019777260 creator A5036709415 @default.
- W2019777260 creator A5079424898 @default.
- W2019777260 date "2014-12-01" @default.
- W2019777260 modified "2023-09-26" @default.
- W2019777260 title "Modeling of global horizontal irradiance in the United Arab Emirates with artificial neural networks" @default.
- W2019777260 cites W1519413825 @default.
- W2019777260 cites W1520654849 @default.
- W2019777260 cites W1974571185 @default.
- W2019777260 cites W1979969632 @default.
- W2019777260 cites W1986382767 @default.
- W2019777260 cites W2006837334 @default.
- W2019777260 cites W2009283913 @default.
- W2019777260 cites W2010847571 @default.
- W2019777260 cites W2012348248 @default.
- W2019777260 cites W2014071523 @default.
- W2019777260 cites W2024787682 @default.
- W2019777260 cites W2033904036 @default.
- W2019777260 cites W2035882531 @default.
- W2019777260 cites W2044289456 @default.
- W2019777260 cites W2047450234 @default.
- W2019777260 cites W2049048424 @default.
- W2019777260 cites W2050999277 @default.
- W2019777260 cites W2062551415 @default.
- W2019777260 cites W2069673223 @default.
- W2019777260 cites W2128349896 @default.
- W2019777260 cites W2137983211 @default.
- W2019777260 cites W2155913179 @default.
- W2019777260 cites W2159120868 @default.
- W2019777260 cites W2334435590 @default.
- W2019777260 cites W3125537303 @default.
- W2019777260 doi "https://doi.org/10.1016/j.energy.2014.09.064" @default.
- W2019777260 hasPublicationYear "2014" @default.
- W2019777260 type Work @default.
- W2019777260 sameAs 2019777260 @default.
- W2019777260 citedByCount "22" @default.
- W2019777260 countsByYear W20197772602015 @default.
- W2019777260 countsByYear W20197772602017 @default.
- W2019777260 countsByYear W20197772602018 @default.
- W2019777260 countsByYear W20197772602019 @default.
- W2019777260 countsByYear W20197772602020 @default.
- W2019777260 countsByYear W20197772602021 @default.
- W2019777260 countsByYear W20197772602022 @default.
- W2019777260 countsByYear W20197772602023 @default.
- W2019777260 crossrefType "journal-article" @default.
- W2019777260 hasAuthorship W2019777260A5016788936 @default.
- W2019777260 hasAuthorship W2019777260A5036709415 @default.
- W2019777260 hasAuthorship W2019777260A5079424898 @default.
- W2019777260 hasConcept C120665830 @default.
- W2019777260 hasConcept C121332964 @default.
- W2019777260 hasConcept C127413603 @default.
- W2019777260 hasConcept C153294291 @default.
- W2019777260 hasConcept C154945302 @default.
- W2019777260 hasConcept C205649164 @default.
- W2019777260 hasConcept C2992067456 @default.
- W2019777260 hasConcept C36365805 @default.
- W2019777260 hasConcept C39432304 @default.
- W2019777260 hasConcept C41008148 @default.
- W2019777260 hasConcept C46423501 @default.
- W2019777260 hasConcept C50644808 @default.
- W2019777260 hasConceptScore W2019777260C120665830 @default.
- W2019777260 hasConceptScore W2019777260C121332964 @default.
- W2019777260 hasConceptScore W2019777260C127413603 @default.
- W2019777260 hasConceptScore W2019777260C153294291 @default.
- W2019777260 hasConceptScore W2019777260C154945302 @default.
- W2019777260 hasConceptScore W2019777260C205649164 @default.
- W2019777260 hasConceptScore W2019777260C2992067456 @default.
- W2019777260 hasConceptScore W2019777260C36365805 @default.
- W2019777260 hasConceptScore W2019777260C39432304 @default.
- W2019777260 hasConceptScore W2019777260C41008148 @default.
- W2019777260 hasConceptScore W2019777260C46423501 @default.
- W2019777260 hasConceptScore W2019777260C50644808 @default.
- W2019777260 hasLocation W20197772601 @default.
- W2019777260 hasOpenAccess W2019777260 @default.
- W2019777260 hasPrimaryLocation W20197772601 @default.
- W2019777260 hasRelatedWork W1994445080 @default.
- W2019777260 hasRelatedWork W2101962646 @default.
- W2019777260 hasRelatedWork W2147822475 @default.
- W2019777260 hasRelatedWork W2386387936 @default.
- W2019777260 hasRelatedWork W2471744513 @default.
- W2019777260 hasRelatedWork W2748952813 @default.
- W2019777260 hasRelatedWork W2778512385 @default.
- W2019777260 hasRelatedWork W2899084033 @default.
- W2019777260 hasRelatedWork W3109833765 @default.
- W2019777260 hasRelatedWork W2402441045 @default.
- W2019777260 hasVolume "77" @default.
- W2019777260 isParatext "false" @default.
- W2019777260 isRetracted "false" @default.
- W2019777260 magId "2019777260" @default.
- W2019777260 workType "article" @default.