Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019805404> ?p ?o ?g. }
- W2019805404 endingPage "4213" @default.
- W2019805404 startingPage "4203" @default.
- W2019805404 abstract "Calcium phosphates (CaP) and phosphate-based glass (P-glass, xCaO–(0.55−x)Na2O–0.45P2O5 composition) composite coatings were obtained on a strong ZrO2 to improve biocompatibility, the mechanical strength and biological activity. Hydroxyapatite (HA) and P-glass mixed powder slurries were coated on the ZrO2 substrate, and subsequently heat-treated to obtain CaP- and P-glass composite coatings. The effects of glass composition (x=0.3, 0.4, 0.5 mol), mixing ratio of glass to HA (30%, 40%, 50% wt/wt), and heat treatment temperature (800°C, 900°C, 1000°C) on the coating properties were investigated. After heat treatment, additional calcium phosphates, i.e., dicalcium phosphate (DCP) and tricalcium phosphate (TCP), were crystallized, resulting in the formation of triphasic calcium phosphates (HA–TCP–DCP) surrounded by a glass phase. The relative amounts of the crystalline phases varied with coating variables. The higher heat treatment temperature and glass amount, and the lower CaO content in the glass composition rendered the composite coatings to retain the higher amounts of TCP and DCP while the initial HA decreased. These appearance of additional crystalline phases and reduction of HA amount were attributed to the combined effects, i.e., the melting-crystallization of P-glass and the reaction between glass liquid phase and HA powder during thermal treatment. As a result of the glass phase in the composite coatings, their microstructures became much denser when compared to the pure HA coating. In particular, a completely dense structure was obtained at coating conditions with large amount of glass addition (50 wt%) at the glass composition of lower CaO content (0.3 mol CaO), and the following heat treatment above 800°C for 2 h. As a result, the adhesion strengths of the composite coating layers were significantly improved when compared to the pure HA coating. The highest strength of the composite coating was ∼40 MPa, an improvement of ∼80% with respect to the pure HA coating. The composite coatings showed much higher dissolution rates than the pure HA coating due to the newly formed crystallines (TCP and DCP) and the remaining glass phase. The osteoblast-like cells grew and spread actively on the composite coating samples. The proliferation numbers and alkaline phosphate (ALP) activities of the cells on the composite coatings were improved by ∼30–40% when compared to Thermanox control and ZrO2 substrate, and were comparable to the pure HA coating. These findings suggested that the CaP and P-glass composites are potentially useful for hard tissue coating system, due to their morphological and mechanical integrity, enhanced bioactivity, and favorable responses to the osteoblast-like cells." @default.
- W2019805404 created "2016-06-24" @default.
- W2019805404 creator A5024066120 @default.
- W2019805404 creator A5054686920 @default.
- W2019805404 creator A5060145180 @default.
- W2019805404 creator A5062060260 @default.
- W2019805404 creator A5062727569 @default.
- W2019805404 date "2004-08-01" @default.
- W2019805404 modified "2023-10-16" @default.
- W2019805404 title "Calcium phosphates and glass composite coatings on zirconia for enhanced biocompatibility" @default.
- W2019805404 cites W1494185026 @default.
- W2019805404 cites W1536028936 @default.
- W2019805404 cites W159151514 @default.
- W2019805404 cites W1914416900 @default.
- W2019805404 cites W1973868908 @default.
- W2019805404 cites W1985716668 @default.
- W2019805404 cites W1998122619 @default.
- W2019805404 cites W2011903907 @default.
- W2019805404 cites W2014887287 @default.
- W2019805404 cites W2018655931 @default.
- W2019805404 cites W2035944492 @default.
- W2019805404 cites W2037776842 @default.
- W2019805404 cites W2045562633 @default.
- W2019805404 cites W2046232956 @default.
- W2019805404 cites W2046593420 @default.
- W2019805404 cites W2054142888 @default.
- W2019805404 cites W2066550413 @default.
- W2019805404 cites W2067632601 @default.
- W2019805404 cites W2073932646 @default.
- W2019805404 cites W2085511029 @default.
- W2019805404 cites W2091466037 @default.
- W2019805404 cites W2102733999 @default.
- W2019805404 cites W2105309709 @default.
- W2019805404 cites W2105918224 @default.
- W2019805404 cites W2110575018 @default.
- W2019805404 cites W2113613856 @default.
- W2019805404 cites W4237383770 @default.
- W2019805404 doi "https://doi.org/10.1016/j.biomaterials.2003.10.094" @default.
- W2019805404 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15046910" @default.
- W2019805404 hasPublicationYear "2004" @default.
- W2019805404 type Work @default.
- W2019805404 sameAs 2019805404 @default.
- W2019805404 citedByCount "89" @default.
- W2019805404 countsByYear W20198054042012 @default.
- W2019805404 countsByYear W20198054042013 @default.
- W2019805404 countsByYear W20198054042014 @default.
- W2019805404 countsByYear W20198054042015 @default.
- W2019805404 countsByYear W20198054042016 @default.
- W2019805404 countsByYear W20198054042017 @default.
- W2019805404 countsByYear W20198054042018 @default.
- W2019805404 countsByYear W20198054042019 @default.
- W2019805404 countsByYear W20198054042020 @default.
- W2019805404 countsByYear W20198054042021 @default.
- W2019805404 countsByYear W20198054042022 @default.
- W2019805404 countsByYear W20198054042023 @default.
- W2019805404 crossrefType "journal-article" @default.
- W2019805404 hasAuthorship W2019805404A5024066120 @default.
- W2019805404 hasAuthorship W2019805404A5054686920 @default.
- W2019805404 hasAuthorship W2019805404A5060145180 @default.
- W2019805404 hasAuthorship W2019805404A5062060260 @default.
- W2019805404 hasAuthorship W2019805404A5062727569 @default.
- W2019805404 hasConcept C104779481 @default.
- W2019805404 hasConcept C122865956 @default.
- W2019805404 hasConcept C123609680 @default.
- W2019805404 hasConcept C127413603 @default.
- W2019805404 hasConcept C134132462 @default.
- W2019805404 hasConcept C159985019 @default.
- W2019805404 hasConcept C178790620 @default.
- W2019805404 hasConcept C185592680 @default.
- W2019805404 hasConcept C191897082 @default.
- W2019805404 hasConcept C192562407 @default.
- W2019805404 hasConcept C203036418 @default.
- W2019805404 hasConcept C2777132085 @default.
- W2019805404 hasConcept C2777230088 @default.
- W2019805404 hasConcept C2778519171 @default.
- W2019805404 hasConcept C2781094431 @default.
- W2019805404 hasConcept C2781448156 @default.
- W2019805404 hasConcept C42360764 @default.
- W2019805404 hasConcept C44280652 @default.
- W2019805404 hasConcept C49040817 @default.
- W2019805404 hasConcept C519063684 @default.
- W2019805404 hasConcept C521977710 @default.
- W2019805404 hasConcept C57863236 @default.
- W2019805404 hasConcept C87976508 @default.
- W2019805404 hasConceptScore W2019805404C104779481 @default.
- W2019805404 hasConceptScore W2019805404C122865956 @default.
- W2019805404 hasConceptScore W2019805404C123609680 @default.
- W2019805404 hasConceptScore W2019805404C127413603 @default.
- W2019805404 hasConceptScore W2019805404C134132462 @default.
- W2019805404 hasConceptScore W2019805404C159985019 @default.
- W2019805404 hasConceptScore W2019805404C178790620 @default.
- W2019805404 hasConceptScore W2019805404C185592680 @default.
- W2019805404 hasConceptScore W2019805404C191897082 @default.
- W2019805404 hasConceptScore W2019805404C192562407 @default.
- W2019805404 hasConceptScore W2019805404C203036418 @default.
- W2019805404 hasConceptScore W2019805404C2777132085 @default.
- W2019805404 hasConceptScore W2019805404C2777230088 @default.
- W2019805404 hasConceptScore W2019805404C2778519171 @default.