Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019819077> ?p ?o ?g. }
- W2019819077 endingPage "979" @default.
- W2019819077 startingPage "970" @default.
- W2019819077 abstract "Consider the following network design problem: given a network G = (V, E), source-sink pairs {si, ti} arrive and desire to send a unit of flow between themselves. The cost of the routing is this: if edge e carries a total of fe flow (from all the terminal pairs), the cost is given by Σ el(fe), where l is some concave cost function; the goal is to minimize the total cost incurred. However, we want the routing to be oblivious: when terminal pair {si, ti} makes its routing decisions, it does not know the current flow on the edges of the network, nor the identity of the other pairs in the system. Moreover, it does not even know the identity of the l, merely knowing that l is a concave of the total flow on the edge. How should it (obliviously) route its one unit of flow? Can we get competitive algorithms for this problem?In this paper, we develop a framework to model oblivious network design problems (of which the above problem is a special case), and give algorithms with poly-logarithmic competitive ratio for problems in this framework (and hence for this problem). Abstractly, given a problem like the one above, the solution is a multicommodity flow producing a on each edge of Le = l(f1(e),f2(e), ..., fk(e)), and the total cost is given by an function agg (Le1,...,Lem) of the loads of all edges. Our goal is to develop oblivious algorithms that approximately minimize the total cost of the routing, knowing the aggregation agg, but merely knowing that l lies in some class C, and having no other information about the current state of the network. Hence we want algorithms that are simultaneously function-oblivious as well as traffic-oblivious.The aggregation functions we consider are the max and σ objective functions, which correspond to the well-known measures of congestion and total cost of a network; in this paper, we prove the following:• If the aggregation is Σ, we give an oblivious algorithm with O(log2n) competitive ratio whenever the load l is in the class of monotone sub-additive functions. (Recall that our algorithm is also function-oblivious; it works whenever each edge has a load l in the class.)• For the case when the aggregation is max, we give an oblivious algorithm with O(log2n log log n) competitive ratio, when the load l is a norm; we also show that such a competitive ratio is not possible for general sub-additive functions.These are the first such general results about oblivious algorithms for network design problems, and we hope the ideas and techniques will lead to more and improved results in this area." @default.
- W2019819077 created "2016-06-24" @default.
- W2019819077 creator A5003889808 @default.
- W2019819077 creator A5016682913 @default.
- W2019819077 creator A5078381067 @default.
- W2019819077 date "2006-01-22" @default.
- W2019819077 modified "2023-09-24" @default.
- W2019819077 title "Oblivious network design" @default.
- W2019819077 cites W148398262 @default.
- W2019819077 cites W1532411173 @default.
- W2019819077 cites W1759768216 @default.
- W2019819077 cites W1963964297 @default.
- W2019819077 cites W1971443646 @default.
- W2019819077 cites W1973444128 @default.
- W2019819077 cites W1981673685 @default.
- W2019819077 cites W1988294273 @default.
- W2019819077 cites W1994495069 @default.
- W2019819077 cites W2002285507 @default.
- W2019819077 cites W2020066367 @default.
- W2019819077 cites W2027682573 @default.
- W2019819077 cites W2029437526 @default.
- W2019819077 cites W2041571997 @default.
- W2019819077 cites W2059149798 @default.
- W2019819077 cites W2059707428 @default.
- W2019819077 cites W2079936083 @default.
- W2019819077 cites W2082353536 @default.
- W2019819077 cites W2091221928 @default.
- W2019819077 cites W2097181193 @default.
- W2019819077 cites W2104701012 @default.
- W2019819077 cites W2106676868 @default.
- W2019819077 cites W2112269231 @default.
- W2019819077 cites W2114493937 @default.
- W2019819077 cites W2119862441 @default.
- W2019819077 cites W2124295613 @default.
- W2019819077 cites W2127248062 @default.
- W2019819077 cites W2130186928 @default.
- W2019819077 cites W2131552728 @default.
- W2019819077 cites W2133156969 @default.
- W2019819077 cites W2136558412 @default.
- W2019819077 cites W2142758253 @default.
- W2019819077 cites W2142779979 @default.
- W2019819077 cites W2145818650 @default.
- W2019819077 cites W2150217455 @default.
- W2019819077 cites W2163150343 @default.
- W2019819077 cites W2169143327 @default.
- W2019819077 cites W745024779 @default.
- W2019819077 doi "https://doi.org/10.5555/1109557.1109665" @default.
- W2019819077 hasPublicationYear "2006" @default.
- W2019819077 type Work @default.
- W2019819077 sameAs 2019819077 @default.
- W2019819077 citedByCount "45" @default.
- W2019819077 countsByYear W20198190772012 @default.
- W2019819077 countsByYear W20198190772014 @default.
- W2019819077 countsByYear W20198190772015 @default.
- W2019819077 countsByYear W20198190772017 @default.
- W2019819077 countsByYear W20198190772019 @default.
- W2019819077 countsByYear W20198190772020 @default.
- W2019819077 countsByYear W20198190772021 @default.
- W2019819077 countsByYear W20198190772022 @default.
- W2019819077 countsByYear W20198190772023 @default.
- W2019819077 crossrefType "proceedings-article" @default.
- W2019819077 hasAuthorship W2019819077A5003889808 @default.
- W2019819077 hasAuthorship W2019819077A5016682913 @default.
- W2019819077 hasAuthorship W2019819077A5078381067 @default.
- W2019819077 hasConcept C102408133 @default.
- W2019819077 hasConcept C114563136 @default.
- W2019819077 hasConcept C114809511 @default.
- W2019819077 hasConcept C126255220 @default.
- W2019819077 hasConcept C134306372 @default.
- W2019819077 hasConcept C14036430 @default.
- W2019819077 hasConcept C157469704 @default.
- W2019819077 hasConcept C162307627 @default.
- W2019819077 hasConcept C162324750 @default.
- W2019819077 hasConcept C170334043 @default.
- W2019819077 hasConcept C175444787 @default.
- W2019819077 hasConcept C182299520 @default.
- W2019819077 hasConcept C2524010 @default.
- W2019819077 hasConcept C31258907 @default.
- W2019819077 hasConcept C33923547 @default.
- W2019819077 hasConcept C38349280 @default.
- W2019819077 hasConcept C39927690 @default.
- W2019819077 hasConcept C41008148 @default.
- W2019819077 hasConcept C74172769 @default.
- W2019819077 hasConcept C76155785 @default.
- W2019819077 hasConcept C77553402 @default.
- W2019819077 hasConcept C78458016 @default.
- W2019819077 hasConcept C86803240 @default.
- W2019819077 hasConcept C99545648 @default.
- W2019819077 hasConceptScore W2019819077C102408133 @default.
- W2019819077 hasConceptScore W2019819077C114563136 @default.
- W2019819077 hasConceptScore W2019819077C114809511 @default.
- W2019819077 hasConceptScore W2019819077C126255220 @default.
- W2019819077 hasConceptScore W2019819077C134306372 @default.
- W2019819077 hasConceptScore W2019819077C14036430 @default.
- W2019819077 hasConceptScore W2019819077C157469704 @default.
- W2019819077 hasConceptScore W2019819077C162307627 @default.
- W2019819077 hasConceptScore W2019819077C162324750 @default.
- W2019819077 hasConceptScore W2019819077C170334043 @default.