Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019885148> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2019885148 abstract "Abstract The mechanistic model DeProF considers steady-state two-phase flow in porous media as a composition of three flow patterns: connected-oil pathway, ganglion dynamics and drop traffic flow. Their key difference is the degree of disconnection of the non-wetting phase which affects the relative magnitude of the rate of energy dissipation caused by capillary effects compared to that caused by viscous stresses. An appropriate mesoscopic scale analysis defines the process independent variables to be the capillary number, Ca, and the oil-water flowrate ratio, r, and leads to the determination of all the internal flow arrangements that are compatible with the externally imposed flow conditions. The observed macroscopic flow is an average over the canonical ensemble of the internal flow arrangements at mesoscopic scale. Extensive simulations using the DeProF algorithm revealed that there exist a continuous line, r*(Ca), in the domain of the process operational variables, (Ca, r) on which the efficiency of the process (oil produced per kW dissipated in pumps) attains a local maximum. The locus r*(Ca) defines the process optimum operating conditions. These findings are consistent with the phenomenology already presented in many experimental works. The scope of the present work is to introduce a rational justification of the existence of the locally optimum operating conditions predicted by the DeProF theory. Steady-state two-phase flow in porous media is a stationary process maintained in dynamic equilibrium on the expense of energy supplied to the system (an off-equilibrium process). The efficiency of the process depends on its spontaneity, measurable by the rate of global entropy production. The latter is the sum of two components: the rate of mechanical energy dissipation at constant temperature and a conformational entropy production component, directly related to the number of internal flow arrangements. The DeProF algorithm simulations indicate that: for every oil-water-pore network system, optimum operating conditions exist for the r*(Ca) values for which the rate of global entropy production becomes maximum, i.e. when the process is as spontaneous as physically possible. The conceptual statement introduced here is an initial approach towards implementing aspects of statistical thermodynamics to elucidate further the underlying physics of the process." @default.
- W2019885148 created "2016-06-24" @default.
- W2019885148 creator A5011314276 @default.
- W2019885148 date "2010-09-19" @default.
- W2019885148 modified "2023-09-23" @default.
- W2019885148 title "Optimum Operating Conditions for Steady-State Two-Phase Flow in Pore Networks: Conceptual Justification Based on Statistical Thermodynamics" @default.
- W2019885148 cites W1965593560 @default.
- W2019885148 cites W1970947511 @default.
- W2019885148 cites W1996613237 @default.
- W2019885148 cites W1997783064 @default.
- W2019885148 cites W1998740619 @default.
- W2019885148 cites W2006511993 @default.
- W2019885148 cites W2011645567 @default.
- W2019885148 cites W2024454965 @default.
- W2019885148 cites W2052227116 @default.
- W2019885148 cites W2052985604 @default.
- W2019885148 cites W2073070728 @default.
- W2019885148 cites W2081750411 @default.
- W2019885148 cites W2095344330 @default.
- W2019885148 cites W2101056856 @default.
- W2019885148 cites W2102860695 @default.
- W2019885148 cites W2183784290 @default.
- W2019885148 cites W3160300832 @default.
- W2019885148 cites W40018858 @default.
- W2019885148 doi "https://doi.org/10.2118/135429-ms" @default.
- W2019885148 hasPublicationYear "2010" @default.
- W2019885148 type Work @default.
- W2019885148 sameAs 2019885148 @default.
- W2019885148 citedByCount "2" @default.
- W2019885148 countsByYear W20198851482012 @default.
- W2019885148 countsByYear W20198851482014 @default.
- W2019885148 crossrefType "proceedings-article" @default.
- W2019885148 hasAuthorship W2019885148A5011314276 @default.
- W2019885148 hasConcept C121332964 @default.
- W2019885148 hasConcept C121864883 @default.
- W2019885148 hasConcept C18762648 @default.
- W2019885148 hasConcept C33923547 @default.
- W2019885148 hasConcept C38349280 @default.
- W2019885148 hasConcept C41008148 @default.
- W2019885148 hasConcept C44280652 @default.
- W2019885148 hasConcept C57879066 @default.
- W2019885148 hasConcept C62520636 @default.
- W2019885148 hasConcept C97355855 @default.
- W2019885148 hasConceptScore W2019885148C121332964 @default.
- W2019885148 hasConceptScore W2019885148C121864883 @default.
- W2019885148 hasConceptScore W2019885148C18762648 @default.
- W2019885148 hasConceptScore W2019885148C33923547 @default.
- W2019885148 hasConceptScore W2019885148C38349280 @default.
- W2019885148 hasConceptScore W2019885148C41008148 @default.
- W2019885148 hasConceptScore W2019885148C44280652 @default.
- W2019885148 hasConceptScore W2019885148C57879066 @default.
- W2019885148 hasConceptScore W2019885148C62520636 @default.
- W2019885148 hasConceptScore W2019885148C97355855 @default.
- W2019885148 hasLocation W20198851481 @default.
- W2019885148 hasOpenAccess W2019885148 @default.
- W2019885148 hasPrimaryLocation W20198851481 @default.
- W2019885148 hasRelatedWork W1549799487 @default.
- W2019885148 hasRelatedWork W2017395445 @default.
- W2019885148 hasRelatedWork W2031767879 @default.
- W2019885148 hasRelatedWork W2071994880 @default.
- W2019885148 hasRelatedWork W2095689448 @default.
- W2019885148 hasRelatedWork W2130071828 @default.
- W2019885148 hasRelatedWork W29349782 @default.
- W2019885148 hasRelatedWork W3124087750 @default.
- W2019885148 hasRelatedWork W3201708408 @default.
- W2019885148 hasRelatedWork W5739843 @default.
- W2019885148 hasRelatedWork W1931294512 @default.
- W2019885148 isParatext "false" @default.
- W2019885148 isRetracted "false" @default.
- W2019885148 magId "2019885148" @default.
- W2019885148 workType "article" @default.