Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019908054> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2019908054 endingPage "86" @default.
- W2019908054 startingPage "81" @default.
- W2019908054 abstract "The question of which Riemannian manifolds admit simple closed geodesics is still a mystery. It is not known whether all closed Riemannian manifolds contain simpleclosed geodesics. For closed manifolds with nontrivial fundamental group, a simple closed geodesic can always be found by taking the shortest homotopically nontrivial closed geodesic. When the manifold is closed but simply connected, the question is open for dimensions three and above. In dimension two, it is known by the theorem of Lusternik and Schnirelmann [6] (see also [3] and [4]) that the 2-sphere equipped with any smooth Riemannian metric contains at least three distinct simple closed geodesics. Non-compact manifolds do not necessarily contain closed geodesics, Euclidean space being an obvious example. Even if the manifold is not simply connected, it may not contain any simple closed geodesics, as with the hyperbolic thrice-punctured sphere. However, among the orientable, finite area, complete hyperbolic 2-manifolds, the thrice-punctured sphere is the only example that contains no simple closed geodesic. In this paper, we shall determine which orientable hyperbolic 3-manifolds do and do not contain simple closed geodesics. We shall prove that the Fuchsian group corresponding to the thrice-punctured sphere generates the only example of a complete non-elementary orientable hyperbolic 3-manifold that does not contain a simple closed geodesic. We do not assume that the manifold is geometrically finite, or even that it has finitely generated fundamental group. The simple closed geodesic which we produce arises from an interesting class of elements of the fundamental group. It is the shortest closed geodesic corresponding to a screw motion induced by the action of the fundamental group on hyperbolic 3-space. In proving our result, we use geometric methods to obtain results about isometries of hyperbolic 3-space. These results apply to elliptic, as well as to parabolic and loxodromic isometries, and we state them in full generality. A related question is whether a hyperbolic 3-manifold always contains a non-simple closed geodesic. In [2], Alan Reid and Ted Chinburg utilized arithmetic hyperbolic 3-manifold theory to construct examples of closed hyperbolic 3-manifolds in which every closed geodesic is simple. We shall be working with orientable 3-manifolds, so all of the isometries discussed will be orientation preserving. 1991 Mathematics Subject Classification 53C22." @default.
- W2019908054 created "2016-06-24" @default.
- W2019908054 creator A5041547280 @default.
- W2019908054 creator A5045681462 @default.
- W2019908054 creator A5076720791 @default.
- W2019908054 date "1999-01-01" @default.
- W2019908054 modified "2023-10-18" @default.
- W2019908054 title "Simple Closed Geodesics in Hyperbolic 3-Manifolds" @default.
- W2019908054 cites W1530501787 @default.
- W2019908054 cites W1590139234 @default.
- W2019908054 cites W1971467227 @default.
- W2019908054 cites W1973858683 @default.
- W2019908054 cites W2066832697 @default.
- W2019908054 cites W2086172547 @default.
- W2019908054 cites W2333300544 @default.
- W2019908054 cites W2575402849 @default.
- W2019908054 cites W372274854 @default.
- W2019908054 doi "https://doi.org/10.1112/s0024609398004883" @default.
- W2019908054 hasPublicationYear "1999" @default.
- W2019908054 type Work @default.
- W2019908054 sameAs 2019908054 @default.
- W2019908054 citedByCount "8" @default.
- W2019908054 countsByYear W20199080542021 @default.
- W2019908054 countsByYear W20199080542022 @default.
- W2019908054 crossrefType "journal-article" @default.
- W2019908054 hasAuthorship W2019908054A5041547280 @default.
- W2019908054 hasAuthorship W2019908054A5045681462 @default.
- W2019908054 hasAuthorship W2019908054A5076720791 @default.
- W2019908054 hasBestOaLocation W20199080541 @default.
- W2019908054 hasConcept C111472728 @default.
- W2019908054 hasConcept C127413603 @default.
- W2019908054 hasConcept C134306372 @default.
- W2019908054 hasConcept C138885662 @default.
- W2019908054 hasConcept C159876591 @default.
- W2019908054 hasConcept C162269530 @default.
- W2019908054 hasConcept C165818556 @default.
- W2019908054 hasConcept C202444582 @default.
- W2019908054 hasConcept C20483540 @default.
- W2019908054 hasConcept C2779593128 @default.
- W2019908054 hasConcept C2780586882 @default.
- W2019908054 hasConcept C33923547 @default.
- W2019908054 hasConcept C529865628 @default.
- W2019908054 hasConcept C70984080 @default.
- W2019908054 hasConcept C74349738 @default.
- W2019908054 hasConcept C78519656 @default.
- W2019908054 hasConcept C83677898 @default.
- W2019908054 hasConcept C92047909 @default.
- W2019908054 hasConceptScore W2019908054C111472728 @default.
- W2019908054 hasConceptScore W2019908054C127413603 @default.
- W2019908054 hasConceptScore W2019908054C134306372 @default.
- W2019908054 hasConceptScore W2019908054C138885662 @default.
- W2019908054 hasConceptScore W2019908054C159876591 @default.
- W2019908054 hasConceptScore W2019908054C162269530 @default.
- W2019908054 hasConceptScore W2019908054C165818556 @default.
- W2019908054 hasConceptScore W2019908054C202444582 @default.
- W2019908054 hasConceptScore W2019908054C20483540 @default.
- W2019908054 hasConceptScore W2019908054C2779593128 @default.
- W2019908054 hasConceptScore W2019908054C2780586882 @default.
- W2019908054 hasConceptScore W2019908054C33923547 @default.
- W2019908054 hasConceptScore W2019908054C529865628 @default.
- W2019908054 hasConceptScore W2019908054C70984080 @default.
- W2019908054 hasConceptScore W2019908054C74349738 @default.
- W2019908054 hasConceptScore W2019908054C78519656 @default.
- W2019908054 hasConceptScore W2019908054C83677898 @default.
- W2019908054 hasConceptScore W2019908054C92047909 @default.
- W2019908054 hasIssue "1" @default.
- W2019908054 hasLocation W20199080541 @default.
- W2019908054 hasLocation W20199080542 @default.
- W2019908054 hasLocation W20199080543 @default.
- W2019908054 hasLocation W20199080544 @default.
- W2019908054 hasLocation W20199080545 @default.
- W2019908054 hasOpenAccess W2019908054 @default.
- W2019908054 hasPrimaryLocation W20199080541 @default.
- W2019908054 hasRelatedWork W2019908054 @default.
- W2019908054 hasRelatedWork W2077633414 @default.
- W2019908054 hasRelatedWork W2091942677 @default.
- W2019908054 hasRelatedWork W2160296092 @default.
- W2019908054 hasRelatedWork W2946352054 @default.
- W2019908054 hasRelatedWork W2950657073 @default.
- W2019908054 hasRelatedWork W2950659015 @default.
- W2019908054 hasRelatedWork W2962909026 @default.
- W2019908054 hasRelatedWork W2993273879 @default.
- W2019908054 hasRelatedWork W3127827089 @default.
- W2019908054 hasVolume "31" @default.
- W2019908054 isParatext "false" @default.
- W2019908054 isRetracted "false" @default.
- W2019908054 magId "2019908054" @default.
- W2019908054 workType "article" @default.