Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019911467> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2019911467 abstract "Abstract Presenting Discrete Flux Element (DFE) Method this paper provides the solution to the diffusivity equation for horizontal wells with regular and irregular geometries. DFE method is used to derive the equation of potential and its derivative with uniform potential as well as uniform flux Inner Boundary Conditions (IBC). The results showed that the equivalent pressure point moves in time and is not the same as the equivalent derivative point. Pressure derivative with respect to ln(tD) reflects the wellbore length and wellbore distance to the no-flow boundary. Introduction Potential distribution around a partially penetrating well, either horizontal or vertical, is to be obtained through solving the diffusivity equation in 3-D. Solution to the diffusivity equation for the sources that are fully penetrated, can be found directly. However in the cases where the sources are partially penetrated and/or they have irregular geometry, direct solution is impractical. This paper presents a new method as Discrete Flux Element (DFE) that permits calculating potential distribution inside the reservoir for partially penetrating wells with irregular geometry. Gravity is not neglected therefore this solution can be used to study special flow problems such as: coning, where gravity plays an important role in modeling the physics of the problem (Azar-Nejad, Tortike and Farouq Ali and Azar-Nejad and Tortike). Therefore the term potential is used throughout the paper. However, if one neglects the gravity effect one can use pressure instead. The reservoir under study is a rectilinear reservoir i.e. an infinite horizontal slab. The other type of boundary conditions can be constructed by the Method of Images. The reservoir is assumed isotropic, however, anisotropy can be introduced through well-known transformation rules. All dimensions are made dimensionless with respect to 2ht, where ht is the reservoir height. Therefore radial flow is represented by a unit slope line in a plot of potential (pressure) against ln(tD)." @default.
- W2019911467 created "2016-06-24" @default.
- W2019911467 creator A5014298821 @default.
- W2019911467 creator A5041469463 @default.
- W2019911467 creator A5089751175 @default.
- W2019911467 date "1996-04-16" @default.
- W2019911467 modified "2023-10-13" @default.
- W2019911467 title "3-D Analytical Solution to the Diffusivity Equation for Finite Sources With Application to Horizontal Wells" @default.
- W2019911467 doi "https://doi.org/10.2118/35512-ms" @default.
- W2019911467 hasPublicationYear "1996" @default.
- W2019911467 type Work @default.
- W2019911467 sameAs 2019911467 @default.
- W2019911467 citedByCount "10" @default.
- W2019911467 crossrefType "proceedings-article" @default.
- W2019911467 hasAuthorship W2019911467A5014298821 @default.
- W2019911467 hasAuthorship W2019911467A5041469463 @default.
- W2019911467 hasAuthorship W2019911467A5089751175 @default.
- W2019911467 hasConcept C103783831 @default.
- W2019911467 hasConcept C120665830 @default.
- W2019911467 hasConcept C121332964 @default.
- W2019911467 hasConcept C127313418 @default.
- W2019911467 hasConcept C134306372 @default.
- W2019911467 hasConcept C135628077 @default.
- W2019911467 hasConcept C182310444 @default.
- W2019911467 hasConcept C191897082 @default.
- W2019911467 hasConcept C192562407 @default.
- W2019911467 hasConcept C2524010 @default.
- W2019911467 hasConcept C28719098 @default.
- W2019911467 hasConcept C33923547 @default.
- W2019911467 hasConcept C37668627 @default.
- W2019911467 hasConcept C38349280 @default.
- W2019911467 hasConcept C57879066 @default.
- W2019911467 hasConcept C62354387 @default.
- W2019911467 hasConcept C63632240 @default.
- W2019911467 hasConcept C68709404 @default.
- W2019911467 hasConcept C97355855 @default.
- W2019911467 hasConceptScore W2019911467C103783831 @default.
- W2019911467 hasConceptScore W2019911467C120665830 @default.
- W2019911467 hasConceptScore W2019911467C121332964 @default.
- W2019911467 hasConceptScore W2019911467C127313418 @default.
- W2019911467 hasConceptScore W2019911467C134306372 @default.
- W2019911467 hasConceptScore W2019911467C135628077 @default.
- W2019911467 hasConceptScore W2019911467C182310444 @default.
- W2019911467 hasConceptScore W2019911467C191897082 @default.
- W2019911467 hasConceptScore W2019911467C192562407 @default.
- W2019911467 hasConceptScore W2019911467C2524010 @default.
- W2019911467 hasConceptScore W2019911467C28719098 @default.
- W2019911467 hasConceptScore W2019911467C33923547 @default.
- W2019911467 hasConceptScore W2019911467C37668627 @default.
- W2019911467 hasConceptScore W2019911467C38349280 @default.
- W2019911467 hasConceptScore W2019911467C57879066 @default.
- W2019911467 hasConceptScore W2019911467C62354387 @default.
- W2019911467 hasConceptScore W2019911467C63632240 @default.
- W2019911467 hasConceptScore W2019911467C68709404 @default.
- W2019911467 hasConceptScore W2019911467C97355855 @default.
- W2019911467 hasLocation W20199114671 @default.
- W2019911467 hasOpenAccess W2019911467 @default.
- W2019911467 hasPrimaryLocation W20199114671 @default.
- W2019911467 hasRelatedWork W1556508989 @default.
- W2019911467 hasRelatedWork W1975330523 @default.
- W2019911467 hasRelatedWork W2017811048 @default.
- W2019911467 hasRelatedWork W2077872344 @default.
- W2019911467 hasRelatedWork W2094931821 @default.
- W2019911467 hasRelatedWork W2369349394 @default.
- W2019911467 hasRelatedWork W2490435863 @default.
- W2019911467 hasRelatedWork W3182189131 @default.
- W2019911467 hasRelatedWork W4206452777 @default.
- W2019911467 hasRelatedWork W4288944437 @default.
- W2019911467 isParatext "false" @default.
- W2019911467 isRetracted "false" @default.
- W2019911467 magId "2019911467" @default.
- W2019911467 workType "article" @default.