Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019914382> ?p ?o ?g. }
- W2019914382 endingPage "1608" @default.
- W2019914382 startingPage "1594" @default.
- W2019914382 abstract "OH Laser Induced Fluorescence (LIF) and picosecond (ps), broadband Coherent Anti-Stokes Raman Spectroscopy (CARS) are used for time-resolved temperature and time-resolved, absolute OH number density measurements in lean H2-air, CH4-air, C2H4-air, and C3H8-air mixtures in a nanosecond (ns) pulse discharge cell/plasma flow reactor. The premixed fuel–air flow in the reactor, initially at T0 = 500 K and P = 100 torr, is excited by a repetitive ns pulse discharge in a plane-to-plane geometry (peak voltage 28 kV, discharge gap 10 mm, estimated pulse energy 1.25 mJ/pulse), operated in burst mode at 10 kHz pulse repetition rate. In most measurements, burst duration is limited to 50 pulses, to preclude plasma-assisted ignition. The discharge uniformity in air and fuel–air flows is verified using sub-ns-gated images (employing an intensified charge-coupled device camera). Temperatures measured at the end of the discharge burst are in the range of T = 550–600 K, using both OH LIF and CARS, and remain essentially unchanged for up to 10 ms after the burst. Time-resolved temperature measured by CARS during plasma-assisted ignition of H2-air is in good agreement with kinetic model predictions. Based on CARS measurement, vibrational nonequilibrium is not a significant factor at the present conditions. Time-resolved, absolute OH number density, measured after the discharge burst, demonstrates that OH concentration in C2H4-air, C3H8-air, and CH4 is highest in lean mixtures. In H2-air, OH concentration is nearly independent of the equivalence ratio. In C2H4-air and C3H8-air, unlike in CH4-air and in H2-air, transient OH-concentration overshoot after the discharge is detected. In C2H4-air and C3H8-air, OH decays after the discharge on the time scale of ∼0.02–0.1 ms, suggesting little accumulation during the burst of pulses repeated at 10 kHz. In CH4-air and H2-air, OH concentration decays within ∼0.1–1.0 ms and 0.5–1.0 ms, respectively, showing that it may accumulate during the burst. The experimental results are compared with kinetic modeling calculations using plasma/fuel chemistry model employing several H2-air and hydrocarbon-air chemistry mechanisms. Kinetic mechanisms for H2-air, CH4-air, and C2H4-air developed by A. Konnov provide the best overall agreement with OH measurements. In C3H8-air, none of the hydrocarbon chemistry mechanisms agrees well with the data. The results show the need for development of an accurate, predictive low-temperature plasma chemistry/fuel chemistry kinetic model applicable to fuels C3 and higher." @default.
- W2019914382 created "2016-06-24" @default.
- W2019914382 creator A5017268584 @default.
- W2019914382 creator A5036813121 @default.
- W2019914382 creator A5076240889 @default.
- W2019914382 creator A5089204648 @default.
- W2019914382 creator A5089556459 @default.
- W2019914382 date "2013-09-01" @default.
- W2019914382 modified "2023-10-02" @default.
- W2019914382 title "Measurements of temperature and hydroxyl radical generation/decay in lean fuel–air mixtures excited by a repetitively pulsed nanosecond discharge" @default.
- W2019914382 cites W1985879852 @default.
- W2019914382 cites W1995741649 @default.
- W2019914382 cites W1998202576 @default.
- W2019914382 cites W2001911729 @default.
- W2019914382 cites W2009989955 @default.
- W2019914382 cites W2012863455 @default.
- W2019914382 cites W2017862402 @default.
- W2019914382 cites W2019213702 @default.
- W2019914382 cites W2019593001 @default.
- W2019914382 cites W2030427263 @default.
- W2019914382 cites W2035363300 @default.
- W2019914382 cites W2038721378 @default.
- W2019914382 cites W2041972095 @default.
- W2019914382 cites W2046649766 @default.
- W2019914382 cites W2059282207 @default.
- W2019914382 cites W2059346827 @default.
- W2019914382 cites W2062595727 @default.
- W2019914382 cites W2063970945 @default.
- W2019914382 cites W2068674765 @default.
- W2019914382 cites W2100268388 @default.
- W2019914382 cites W2102468142 @default.
- W2019914382 cites W2106743174 @default.
- W2019914382 cites W2108461784 @default.
- W2019914382 cites W2112890937 @default.
- W2019914382 cites W2115019644 @default.
- W2019914382 cites W2116032921 @default.
- W2019914382 cites W2116502292 @default.
- W2019914382 cites W2119958959 @default.
- W2019914382 cites W2120089134 @default.
- W2019914382 cites W2126109350 @default.
- W2019914382 cites W2137685156 @default.
- W2019914382 cites W2159472109 @default.
- W2019914382 cites W2164168998 @default.
- W2019914382 doi "https://doi.org/10.1016/j.combustflame.2013.03.015" @default.
- W2019914382 hasPublicationYear "2013" @default.
- W2019914382 type Work @default.
- W2019914382 sameAs 2019914382 @default.
- W2019914382 citedByCount "79" @default.
- W2019914382 countsByYear W20199143822014 @default.
- W2019914382 countsByYear W20199143822015 @default.
- W2019914382 countsByYear W20199143822016 @default.
- W2019914382 countsByYear W20199143822017 @default.
- W2019914382 countsByYear W20199143822018 @default.
- W2019914382 countsByYear W20199143822019 @default.
- W2019914382 countsByYear W20199143822020 @default.
- W2019914382 countsByYear W20199143822021 @default.
- W2019914382 countsByYear W20199143822022 @default.
- W2019914382 countsByYear W20199143822023 @default.
- W2019914382 crossrefType "journal-article" @default.
- W2019914382 hasAuthorship W2019914382A5017268584 @default.
- W2019914382 hasAuthorship W2019914382A5036813121 @default.
- W2019914382 hasAuthorship W2019914382A5076240889 @default.
- W2019914382 hasAuthorship W2019914382A5089204648 @default.
- W2019914382 hasAuthorship W2019914382A5089556459 @default.
- W2019914382 hasConcept C113196181 @default.
- W2019914382 hasConcept C120665830 @default.
- W2019914382 hasConcept C121332964 @default.
- W2019914382 hasConcept C165801399 @default.
- W2019914382 hasConcept C181500209 @default.
- W2019914382 hasConcept C182862853 @default.
- W2019914382 hasConcept C184779094 @default.
- W2019914382 hasConcept C185592680 @default.
- W2019914382 hasConcept C192562407 @default.
- W2019914382 hasConcept C2781036261 @default.
- W2019914382 hasConcept C41008148 @default.
- W2019914382 hasConcept C43617362 @default.
- W2019914382 hasConcept C47586369 @default.
- W2019914382 hasConcept C51141536 @default.
- W2019914382 hasConcept C520434653 @default.
- W2019914382 hasConcept C55005982 @default.
- W2019914382 hasConcept C554190296 @default.
- W2019914382 hasConcept C62520636 @default.
- W2019914382 hasConcept C76155785 @default.
- W2019914382 hasConcept C82706917 @default.
- W2019914382 hasConceptScore W2019914382C113196181 @default.
- W2019914382 hasConceptScore W2019914382C120665830 @default.
- W2019914382 hasConceptScore W2019914382C121332964 @default.
- W2019914382 hasConceptScore W2019914382C165801399 @default.
- W2019914382 hasConceptScore W2019914382C181500209 @default.
- W2019914382 hasConceptScore W2019914382C182862853 @default.
- W2019914382 hasConceptScore W2019914382C184779094 @default.
- W2019914382 hasConceptScore W2019914382C185592680 @default.
- W2019914382 hasConceptScore W2019914382C192562407 @default.
- W2019914382 hasConceptScore W2019914382C2781036261 @default.
- W2019914382 hasConceptScore W2019914382C41008148 @default.
- W2019914382 hasConceptScore W2019914382C43617362 @default.
- W2019914382 hasConceptScore W2019914382C47586369 @default.
- W2019914382 hasConceptScore W2019914382C51141536 @default.