Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019915136> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2019915136 endingPage "111" @default.
- W2019915136 startingPage "111" @default.
- W2019915136 abstract "Abstract Background/Aims Lately the popular press is rife with tantalizing references to coming advances brought by “Big Data” methods and software. Modern living--mobile and social computing particularly--emits enormous plumes of data. This data, we are told, can be analyzed in real-time to spot trends and yield important insights, to the benefit of business and mankind generally. The general idea of incidentally-produced data that can be exploited to produce valuable insights is one an HMORN audience is eminently comfortable with--it describes quite a lot of our research. But where do we fit in with these new trends? Have we all been “Data Scientists” doing “Big Data” for years now, and the rest of the world is just now catching up to us? Or, are these things really different and new? Are there things we should be appropriating from this “new” field to make our own work stronger? Methods The proposed talk will describe and define several commonly-cited ideas and methods--to wit: (a) big data; (b) map/reduce; (c) no SQL; and (d) data science. Results The talk will locate these in a larger technological context, list synonyms and closely related technologies and describe situations where expanding into less-familiar tools may well bear fruit for research data projects. Conclusions While much of the tools and methods of big data are squarely addressed to problems we don’t frequently encounter in HMORN research, it is good to have a conceptual understanding of them so that when we do hit the limits of conventional methods and resources we have “someplace to go” before giving a project up as infeasible." @default.
- W2019915136 created "2016-06-24" @default.
- W2019915136 creator A5047145655 @default.
- W2019915136 date "2014-09-01" @default.
- W2019915136 modified "2023-09-27" @default.
- W2019915136 title "PS1-6: Big Data, Data Science and You: Demystifying Some Big Ideas" @default.
- W2019915136 doi "https://doi.org/10.3121/cmr.2014.1250.ps1-6" @default.
- W2019915136 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4453389" @default.
- W2019915136 hasPublicationYear "2014" @default.
- W2019915136 type Work @default.
- W2019915136 sameAs 2019915136 @default.
- W2019915136 citedByCount "0" @default.
- W2019915136 crossrefType "journal-article" @default.
- W2019915136 hasAuthorship W2019915136A5047145655 @default.
- W2019915136 hasBestOaLocation W20199151361 @default.
- W2019915136 hasConcept C124101348 @default.
- W2019915136 hasConcept C136764020 @default.
- W2019915136 hasConcept C166957645 @default.
- W2019915136 hasConcept C202444582 @default.
- W2019915136 hasConcept C2522767166 @default.
- W2019915136 hasConcept C2779343474 @default.
- W2019915136 hasConcept C33923547 @default.
- W2019915136 hasConcept C41008148 @default.
- W2019915136 hasConcept C75684735 @default.
- W2019915136 hasConcept C95457728 @default.
- W2019915136 hasConcept C9652623 @default.
- W2019915136 hasConceptScore W2019915136C124101348 @default.
- W2019915136 hasConceptScore W2019915136C136764020 @default.
- W2019915136 hasConceptScore W2019915136C166957645 @default.
- W2019915136 hasConceptScore W2019915136C202444582 @default.
- W2019915136 hasConceptScore W2019915136C2522767166 @default.
- W2019915136 hasConceptScore W2019915136C2779343474 @default.
- W2019915136 hasConceptScore W2019915136C33923547 @default.
- W2019915136 hasConceptScore W2019915136C41008148 @default.
- W2019915136 hasConceptScore W2019915136C75684735 @default.
- W2019915136 hasConceptScore W2019915136C95457728 @default.
- W2019915136 hasConceptScore W2019915136C9652623 @default.
- W2019915136 hasIssue "1-2" @default.
- W2019915136 hasLocation W20199151361 @default.
- W2019915136 hasLocation W20199151362 @default.
- W2019915136 hasLocation W20199151363 @default.
- W2019915136 hasOpenAccess W2019915136 @default.
- W2019915136 hasPrimaryLocation W20199151361 @default.
- W2019915136 hasRelatedWork W1996408511 @default.
- W2019915136 hasRelatedWork W2353949602 @default.
- W2019915136 hasRelatedWork W2783730940 @default.
- W2019915136 hasRelatedWork W2894044648 @default.
- W2019915136 hasRelatedWork W2990382848 @default.
- W2019915136 hasRelatedWork W3037657749 @default.
- W2019915136 hasRelatedWork W4247880953 @default.
- W2019915136 hasRelatedWork W4299638067 @default.
- W2019915136 hasRelatedWork W4308427638 @default.
- W2019915136 hasRelatedWork W4377966303 @default.
- W2019915136 hasVolume "12" @default.
- W2019915136 isParatext "false" @default.
- W2019915136 isRetracted "false" @default.
- W2019915136 magId "2019915136" @default.
- W2019915136 workType "article" @default.