Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019916408> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2019916408 abstract "The clustering problem concerns the discovery of homogeneous groups of data according to a certain similarity measure. Clustering suffers from the curse of dimensionality. It is not meaningful to look for clusters in high dimensional spaces as the average density of points anywhere in input space is likely to be low. As a consequence, distance functions that equally use all input features may be ineffective. We introduce an algorithm that discovers clusters in subspaces spanned by different combinations of dimensions via local weightings of features. This approach avoids the risk of loss of information encountered in global dimensionality reduction techniques. Our method associates to each cluster a weight vector, whose values capture the relevance of features within the corresponding cluster. In this paper we present an efficient SQL implementation of our algorithm, that enables the discovery of clusters on data residing inside a relational DBMS." @default.
- W2019916408 created "2016-06-24" @default.
- W2019916408 creator A5010497177 @default.
- W2019916408 creator A5047174769 @default.
- W2019916408 creator A5063685438 @default.
- W2019916408 creator A5090148962 @default.
- W2019916408 date "2003-06-13" @default.
- W2019916408 modified "2023-09-23" @default.
- W2019916408 title "Clustering gene expression data in SQL using locally adaptive metrics" @default.
- W2019916408 cites W1977496278 @default.
- W2019916408 cites W1983524036 @default.
- W2019916408 cites W1986244660 @default.
- W2019916408 cites W1995433152 @default.
- W2019916408 cites W2056763477 @default.
- W2019916408 cites W2095897464 @default.
- W2019916408 cites W2146610201 @default.
- W2019916408 cites W2163336863 @default.
- W2019916408 cites W38206254 @default.
- W2019916408 cites W4244340606 @default.
- W2019916408 cites W4254311734 @default.
- W2019916408 doi "https://doi.org/10.1145/882082.882091" @default.
- W2019916408 hasPublicationYear "2003" @default.
- W2019916408 type Work @default.
- W2019916408 sameAs 2019916408 @default.
- W2019916408 citedByCount "7" @default.
- W2019916408 countsByYear W20199164082019 @default.
- W2019916408 crossrefType "proceedings-article" @default.
- W2019916408 hasAuthorship W2019916408A5010497177 @default.
- W2019916408 hasAuthorship W2019916408A5047174769 @default.
- W2019916408 hasAuthorship W2019916408A5063685438 @default.
- W2019916408 hasAuthorship W2019916408A5090148962 @default.
- W2019916408 hasConcept C124101348 @default.
- W2019916408 hasConcept C154945302 @default.
- W2019916408 hasConcept C41008148 @default.
- W2019916408 hasConcept C510870499 @default.
- W2019916408 hasConcept C73555534 @default.
- W2019916408 hasConcept C77088390 @default.
- W2019916408 hasConceptScore W2019916408C124101348 @default.
- W2019916408 hasConceptScore W2019916408C154945302 @default.
- W2019916408 hasConceptScore W2019916408C41008148 @default.
- W2019916408 hasConceptScore W2019916408C510870499 @default.
- W2019916408 hasConceptScore W2019916408C73555534 @default.
- W2019916408 hasConceptScore W2019916408C77088390 @default.
- W2019916408 hasLocation W20199164081 @default.
- W2019916408 hasOpenAccess W2019916408 @default.
- W2019916408 hasPrimaryLocation W20199164081 @default.
- W2019916408 hasRelatedWork W1545523085 @default.
- W2019916408 hasRelatedWork W1849651648 @default.
- W2019916408 hasRelatedWork W1999627569 @default.
- W2019916408 hasRelatedWork W2003616250 @default.
- W2019916408 hasRelatedWork W2131119797 @default.
- W2019916408 hasRelatedWork W2347219288 @default.
- W2019916408 hasRelatedWork W2356335648 @default.
- W2019916408 hasRelatedWork W2380770581 @default.
- W2019916408 hasRelatedWork W4294855463 @default.
- W2019916408 hasRelatedWork W763609066 @default.
- W2019916408 isParatext "false" @default.
- W2019916408 isRetracted "false" @default.
- W2019916408 magId "2019916408" @default.
- W2019916408 workType "article" @default.