Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019917126> ?p ?o ?g. }
- W2019917126 endingPage "75" @default.
- W2019917126 startingPage "64" @default.
- W2019917126 abstract "Determination of stem and crown biomass requires accurate measurements of individual tree stem, bark, branch and needles. These measurements are time-consuming especially for mature trees. Accurate field measurements can be done only in a destructive manner. Terrestrial laser scanning (TLS) measurements are a viable option for measuring the reference information needed. TLS measurements provide dense point clouds in which features describing biomass can be extracted for stem form and canopy dimensions. Existing biomass models do not utilise canopy size information and therefore TLS-based estimation methods should improve the accuracy of biomass estimation. The main objective of this study was to estimate single-tree-level aboveground biomass (AGB), based on models developed using TLS data. The modelling dataset included 64 laboratory-measured trees. Models were developed for total AGB, tree stem-, living branch- and dead branch biomass. Modelling results were also compared with existing individual tree-level biomass models and showed that AGB estimation accuracies were improved, compared with those of existing models. However, current biomass models based on diameter-at-breast height (DBH), tree height and species worked rather well for stem- and total biomass. TLS-based models improved estimation accuracies, especially estimation of branch biomass. We suggest the use of stem curve and crown size geometric measurements from TLS data as a basis for allometric biomass models rather than statistical three-dimensional point metrics, since TLS statistical metrics are dependent on various scanning parameters and tree neighbourhood characteristics." @default.
- W2019917126 created "2016-06-24" @default.
- W2019917126 creator A5011830111 @default.
- W2019917126 creator A5018804090 @default.
- W2019917126 creator A5020136472 @default.
- W2019917126 creator A5023732621 @default.
- W2019917126 creator A5031025177 @default.
- W2019917126 creator A5033042071 @default.
- W2019917126 creator A5047838080 @default.
- W2019917126 creator A5061837252 @default.
- W2019917126 creator A5063813088 @default.
- W2019917126 date "2013-01-01" @default.
- W2019917126 modified "2023-10-16" @default.
- W2019917126 title "Individual tree biomass estimation using terrestrial laser scanning" @default.
- W2019917126 cites W1967586169 @default.
- W2019917126 cites W1977940988 @default.
- W2019917126 cites W1986104804 @default.
- W2019917126 cites W1989354199 @default.
- W2019917126 cites W2000552749 @default.
- W2019917126 cites W2016567422 @default.
- W2019917126 cites W2028403781 @default.
- W2019917126 cites W2046600498 @default.
- W2019917126 cites W2062883956 @default.
- W2019917126 cites W2084170803 @default.
- W2019917126 cites W2099326894 @default.
- W2019917126 cites W2114191733 @default.
- W2019917126 cites W2115322030 @default.
- W2019917126 cites W2119600412 @default.
- W2019917126 cites W2134947018 @default.
- W2019917126 cites W2140041315 @default.
- W2019917126 cites W2150206334 @default.
- W2019917126 cites W2155714399 @default.
- W2019917126 cites W2323662357 @default.
- W2019917126 doi "https://doi.org/10.1016/j.isprsjprs.2012.10.003" @default.
- W2019917126 hasPublicationYear "2013" @default.
- W2019917126 type Work @default.
- W2019917126 sameAs 2019917126 @default.
- W2019917126 citedByCount "211" @default.
- W2019917126 countsByYear W20199171262013 @default.
- W2019917126 countsByYear W20199171262014 @default.
- W2019917126 countsByYear W20199171262015 @default.
- W2019917126 countsByYear W20199171262016 @default.
- W2019917126 countsByYear W20199171262017 @default.
- W2019917126 countsByYear W20199171262018 @default.
- W2019917126 countsByYear W20199171262019 @default.
- W2019917126 countsByYear W20199171262020 @default.
- W2019917126 countsByYear W20199171262021 @default.
- W2019917126 countsByYear W20199171262022 @default.
- W2019917126 countsByYear W20199171262023 @default.
- W2019917126 crossrefType "journal-article" @default.
- W2019917126 hasAuthorship W2019917126A5011830111 @default.
- W2019917126 hasAuthorship W2019917126A5018804090 @default.
- W2019917126 hasAuthorship W2019917126A5020136472 @default.
- W2019917126 hasAuthorship W2019917126A5023732621 @default.
- W2019917126 hasAuthorship W2019917126A5031025177 @default.
- W2019917126 hasAuthorship W2019917126A5033042071 @default.
- W2019917126 hasAuthorship W2019917126A5047838080 @default.
- W2019917126 hasAuthorship W2019917126A5061837252 @default.
- W2019917126 hasAuthorship W2019917126A5063813088 @default.
- W2019917126 hasConcept C101000010 @default.
- W2019917126 hasConcept C105795698 @default.
- W2019917126 hasConcept C113174947 @default.
- W2019917126 hasConcept C115540264 @default.
- W2019917126 hasConcept C120665830 @default.
- W2019917126 hasConcept C121332964 @default.
- W2019917126 hasConcept C131979681 @default.
- W2019917126 hasConcept C134306372 @default.
- W2019917126 hasConcept C141349535 @default.
- W2019917126 hasConcept C153026981 @default.
- W2019917126 hasConcept C18903297 @default.
- W2019917126 hasConcept C199343813 @default.
- W2019917126 hasConcept C205649164 @default.
- W2019917126 hasConcept C2778400979 @default.
- W2019917126 hasConcept C31972630 @default.
- W2019917126 hasConcept C33923547 @default.
- W2019917126 hasConcept C34153902 @default.
- W2019917126 hasConcept C39432304 @default.
- W2019917126 hasConcept C41008148 @default.
- W2019917126 hasConcept C42060753 @default.
- W2019917126 hasConcept C520434653 @default.
- W2019917126 hasConcept C58330081 @default.
- W2019917126 hasConcept C62649853 @default.
- W2019917126 hasConcept C71924100 @default.
- W2019917126 hasConcept C86803240 @default.
- W2019917126 hasConceptScore W2019917126C101000010 @default.
- W2019917126 hasConceptScore W2019917126C105795698 @default.
- W2019917126 hasConceptScore W2019917126C113174947 @default.
- W2019917126 hasConceptScore W2019917126C115540264 @default.
- W2019917126 hasConceptScore W2019917126C120665830 @default.
- W2019917126 hasConceptScore W2019917126C121332964 @default.
- W2019917126 hasConceptScore W2019917126C131979681 @default.
- W2019917126 hasConceptScore W2019917126C134306372 @default.
- W2019917126 hasConceptScore W2019917126C141349535 @default.
- W2019917126 hasConceptScore W2019917126C153026981 @default.
- W2019917126 hasConceptScore W2019917126C18903297 @default.
- W2019917126 hasConceptScore W2019917126C199343813 @default.
- W2019917126 hasConceptScore W2019917126C205649164 @default.
- W2019917126 hasConceptScore W2019917126C2778400979 @default.