Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019918692> ?p ?o ?g. }
- W2019918692 endingPage "14" @default.
- W2019918692 startingPage "9" @default.
- W2019918692 abstract "The cryogenic detectors in the form of bolometers are presently used for different applications, in particular for very rare or hypothetical events associated with new forms of matter, specifically related to searches for dark matter. In the detection of particles with a semiconductor as target and detector, usually two signals are measured: ionization and heat. The amplification of the thermal signal is obtained with the prescriptions from the Luke–Neganov effect. The energy deposited in the semiconductor lattice as stable defects in the form of Frenkel pairs at cryogenic temperatures, following the interaction of a dark matter particle, is evaluated and consequences for measured quantities are discussed. This contribution is included in the energy balance of the Luke effect. Applying the present model to germanium and silicon, we found that for the same incident weakly interacting massive particle the energy deposited in defects in germanium is about twice the value for silicon." @default.
- W2019918692 created "2016-06-24" @default.
- W2019918692 creator A5002155692 @default.
- W2019918692 creator A5002424176 @default.
- W2019918692 creator A5080577345 @default.
- W2019918692 date "2013-04-01" @default.
- W2019918692 modified "2023-09-27" @default.
- W2019918692 title "Analysis of defect formation in semiconductor cryogenic bolometric detectors created by heavy dark matter" @default.
- W2019918692 cites W1963549980 @default.
- W2019918692 cites W1965446210 @default.
- W2019918692 cites W1970571366 @default.
- W2019918692 cites W1975613691 @default.
- W2019918692 cites W1987076098 @default.
- W2019918692 cites W1999666933 @default.
- W2019918692 cites W2005187158 @default.
- W2019918692 cites W2006001133 @default.
- W2019918692 cites W2009007970 @default.
- W2019918692 cites W2009754347 @default.
- W2019918692 cites W2025554531 @default.
- W2019918692 cites W2029940980 @default.
- W2019918692 cites W2030987799 @default.
- W2019918692 cites W2031831197 @default.
- W2019918692 cites W2037076527 @default.
- W2019918692 cites W2041826536 @default.
- W2019918692 cites W2045622945 @default.
- W2019918692 cites W2046567706 @default.
- W2019918692 cites W2054397353 @default.
- W2019918692 cites W2054568261 @default.
- W2019918692 cites W2058981143 @default.
- W2019918692 cites W2059099283 @default.
- W2019918692 cites W2061267700 @default.
- W2019918692 cites W2076426324 @default.
- W2019918692 cites W2077994487 @default.
- W2019918692 cites W2078354567 @default.
- W2019918692 cites W2082250425 @default.
- W2019918692 cites W2084174684 @default.
- W2019918692 cites W2087381965 @default.
- W2019918692 cites W2088109098 @default.
- W2019918692 cites W2095200467 @default.
- W2019918692 cites W2100365119 @default.
- W2019918692 cites W2108274582 @default.
- W2019918692 cites W2109514177 @default.
- W2019918692 cites W2110352019 @default.
- W2019918692 cites W2118214174 @default.
- W2019918692 cites W2124868203 @default.
- W2019918692 cites W2147875900 @default.
- W2019918692 cites W2149577393 @default.
- W2019918692 cites W2155462717 @default.
- W2019918692 cites W2161138561 @default.
- W2019918692 cites W2169477789 @default.
- W2019918692 cites W3099731122 @default.
- W2019918692 cites W3100915984 @default.
- W2019918692 cites W3103947838 @default.
- W2019918692 cites W3105670934 @default.
- W2019918692 cites W3122217637 @default.
- W2019918692 doi "https://doi.org/10.1016/j.astropartphys.2013.01.005" @default.
- W2019918692 hasPublicationYear "2013" @default.
- W2019918692 type Work @default.
- W2019918692 sameAs 2019918692 @default.
- W2019918692 citedByCount "4" @default.
- W2019918692 countsByYear W20199186922013 @default.
- W2019918692 countsByYear W20199186922014 @default.
- W2019918692 countsByYear W20199186922016 @default.
- W2019918692 countsByYear W20199186922023 @default.
- W2019918692 crossrefType "journal-article" @default.
- W2019918692 hasAuthorship W2019918692A5002155692 @default.
- W2019918692 hasAuthorship W2019918692A5002424176 @default.
- W2019918692 hasAuthorship W2019918692A5080577345 @default.
- W2019918692 hasBestOaLocation W20199186922 @default.
- W2019918692 hasConcept C108225325 @default.
- W2019918692 hasConcept C110023515 @default.
- W2019918692 hasConcept C120665830 @default.
- W2019918692 hasConcept C121332964 @default.
- W2019918692 hasConcept C148704626 @default.
- W2019918692 hasConcept C159249277 @default.
- W2019918692 hasConcept C185544564 @default.
- W2019918692 hasConcept C21028948 @default.
- W2019918692 hasConcept C44870925 @default.
- W2019918692 hasConcept C49040817 @default.
- W2019918692 hasConcept C544956773 @default.
- W2019918692 hasConcept C550623735 @default.
- W2019918692 hasConcept C94915269 @default.
- W2019918692 hasConceptScore W2019918692C108225325 @default.
- W2019918692 hasConceptScore W2019918692C110023515 @default.
- W2019918692 hasConceptScore W2019918692C120665830 @default.
- W2019918692 hasConceptScore W2019918692C121332964 @default.
- W2019918692 hasConceptScore W2019918692C148704626 @default.
- W2019918692 hasConceptScore W2019918692C159249277 @default.
- W2019918692 hasConceptScore W2019918692C185544564 @default.
- W2019918692 hasConceptScore W2019918692C21028948 @default.
- W2019918692 hasConceptScore W2019918692C44870925 @default.
- W2019918692 hasConceptScore W2019918692C49040817 @default.
- W2019918692 hasConceptScore W2019918692C544956773 @default.
- W2019918692 hasConceptScore W2019918692C550623735 @default.
- W2019918692 hasConceptScore W2019918692C94915269 @default.
- W2019918692 hasLocation W20199186921 @default.
- W2019918692 hasLocation W20199186922 @default.
- W2019918692 hasOpenAccess W2019918692 @default.