Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019919182> ?p ?o ?g. }
- W2019919182 endingPage "2227" @default.
- W2019919182 startingPage "2220" @default.
- W2019919182 abstract "Gabor filters (GFs) play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved GFs that locally adapt their shape to the direction of flow. These curved GFs enable the choice of filter parameters that increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved GFs are applied to the curved ridge and valley structures of low-quality fingerprint images. First, we combine two orientation-field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation. Subsequently, these curved regions are used for estimating the local ridge frequency. Finally, curved GFs are defined based on curved regions, and they apply the previously estimated orientations and ridge frequencies for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison with state-of-the-art enhancement methods." @default.
- W2019919182 created "2016-06-24" @default.
- W2019919182 creator A5015823290 @default.
- W2019919182 date "2012-04-01" @default.
- W2019919182 modified "2023-10-12" @default.
- W2019919182 title "Curved-Region-Based Ridge Frequency Estimation and Curved Gabor Filters for Fingerprint Image Enhancement" @default.
- W2019919182 cites W1565631400 @default.
- W2019919182 cites W1659951205 @default.
- W2019919182 cites W1834846564 @default.
- W2019919182 cites W1967790662 @default.
- W2019919182 cites W1969840923 @default.
- W2019919182 cites W1974821667 @default.
- W2019919182 cites W1994424757 @default.
- W2019919182 cites W2006500012 @default.
- W2019919182 cites W2019273017 @default.
- W2019919182 cites W2021181521 @default.
- W2019919182 cites W2029683515 @default.
- W2019919182 cites W2038588823 @default.
- W2019919182 cites W2050748687 @default.
- W2019919182 cites W2067390842 @default.
- W2019919182 cites W2098532194 @default.
- W2019919182 cites W2100698407 @default.
- W2019919182 cites W2103384342 @default.
- W2019919182 cites W2103438437 @default.
- W2019919182 cites W2103496373 @default.
- W2019919182 cites W2109131581 @default.
- W2019919182 cites W2110026944 @default.
- W2019919182 cites W2114214092 @default.
- W2019919182 cites W2115639406 @default.
- W2019919182 cites W2118498934 @default.
- W2019919182 cites W2118823856 @default.
- W2019919182 cites W2122658541 @default.
- W2019919182 cites W2123481956 @default.
- W2019919182 cites W2124874699 @default.
- W2019919182 cites W2126440645 @default.
- W2019919182 cites W2126472513 @default.
- W2019919182 cites W2127717018 @default.
- W2019919182 cites W2129631732 @default.
- W2019919182 cites W2131069463 @default.
- W2019919182 cites W2137441863 @default.
- W2019919182 cites W2137923066 @default.
- W2019919182 cites W2138146874 @default.
- W2019919182 cites W2138584058 @default.
- W2019919182 cites W2140602039 @default.
- W2019919182 cites W2142365509 @default.
- W2019919182 cites W2142481374 @default.
- W2019919182 cites W2144127923 @default.
- W2019919182 cites W2145624469 @default.
- W2019919182 cites W2147327413 @default.
- W2019919182 cites W2148486884 @default.
- W2019919182 cites W2150254808 @default.
- W2019919182 cites W2153613314 @default.
- W2019919182 cites W2154624311 @default.
- W2019919182 cites W2158030311 @default.
- W2019919182 cites W2164519644 @default.
- W2019919182 cites W2167034998 @default.
- W2019919182 cites W2170371365 @default.
- W2019919182 cites W2170974086 @default.
- W2019919182 cites W4205760248 @default.
- W2019919182 cites W4230579564 @default.
- W2019919182 cites W4231915598 @default.
- W2019919182 doi "https://doi.org/10.1109/tip.2011.2170696" @default.
- W2019919182 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21984503" @default.
- W2019919182 hasPublicationYear "2012" @default.
- W2019919182 type Work @default.
- W2019919182 sameAs 2019919182 @default.
- W2019919182 citedByCount "113" @default.
- W2019919182 countsByYear W20199191822012 @default.
- W2019919182 countsByYear W20199191822013 @default.
- W2019919182 countsByYear W20199191822014 @default.
- W2019919182 countsByYear W20199191822015 @default.
- W2019919182 countsByYear W20199191822016 @default.
- W2019919182 countsByYear W20199191822017 @default.
- W2019919182 countsByYear W20199191822018 @default.
- W2019919182 countsByYear W20199191822019 @default.
- W2019919182 countsByYear W20199191822020 @default.
- W2019919182 countsByYear W20199191822021 @default.
- W2019919182 countsByYear W20199191822022 @default.
- W2019919182 countsByYear W20199191822023 @default.
- W2019919182 crossrefType "journal-article" @default.
- W2019919182 hasAuthorship W2019919182A5015823290 @default.
- W2019919182 hasBestOaLocation W20199191822 @default.
- W2019919182 hasConcept C106131492 @default.
- W2019919182 hasConcept C127313418 @default.
- W2019919182 hasConcept C151730666 @default.
- W2019919182 hasConcept C154945302 @default.
- W2019919182 hasConcept C16345878 @default.
- W2019919182 hasConcept C2524010 @default.
- W2019919182 hasConcept C2777826928 @default.
- W2019919182 hasConcept C2779883129 @default.
- W2019919182 hasConcept C31972630 @default.
- W2019919182 hasConcept C32277403 @default.
- W2019919182 hasConcept C33923547 @default.
- W2019919182 hasConcept C3770464 @default.
- W2019919182 hasConcept C41008148 @default.
- W2019919182 hasConcept C52622490 @default.
- W2019919182 hasConceptScore W2019919182C106131492 @default.
- W2019919182 hasConceptScore W2019919182C127313418 @default.