Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019920196> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2019920196 endingPage "212" @default.
- W2019920196 startingPage "208" @default.
- W2019920196 abstract "In this brief, we have proposed a design strategy for an energy-efficient circuit/architecture to detect the onset of epileptic seizures with high efficacy. The architecture consists of two stages. The first stage is a low complexity Coastline parameter algorithm that consumes very low energy per computation. The second stage is a more efficacious wavelet-based algorithm (discrete wavelet transform-quasi-averaging) that consumes relatively higher energy and is powered ON only if determined by the low-complexity first stage. Using this proposed strategy, we achieve significant reduction in the energy consumption of the circuit by avoiding redundant computations, thereby increasing the longevity of the battery. We also observe that it leads to an improvement in efficacy. The two algorithms are user-programmable to compensate for the intersubject variations of neural signals. We use in vivo neural recordings from large animals (rats) to test the functionality of the system and calculate efficacy, subjected to minimum delay in detection. The system is simulated using 65-nm bulk-Si technology library. The simulated results show 32% energy savings (compared with a single-stage wavelet-based algorithm), consuming an average of 31.2 nJ/computation. The results also show a 12% increase in efficacy." @default.
- W2019920196 created "2016-06-24" @default.
- W2019920196 creator A5019252201 @default.
- W2019920196 creator A5031161187 @default.
- W2019920196 creator A5088246631 @default.
- W2019920196 date "2015-01-01" @default.
- W2019920196 modified "2023-09-24" @default.
- W2019920196 title "Low-Energy Two-Stage Algorithm for High Efficacy Epileptic Seizure Detection" @default.
- W2019920196 cites W1985844258 @default.
- W2019920196 cites W2030250405 @default.
- W2019920196 cites W2037746973 @default.
- W2019920196 cites W2040773573 @default.
- W2019920196 cites W2053089978 @default.
- W2019920196 cites W2055783343 @default.
- W2019920196 cites W2086132039 @default.
- W2019920196 cites W2087847943 @default.
- W2019920196 cites W2092634008 @default.
- W2019920196 cites W2119234283 @default.
- W2019920196 cites W2125513893 @default.
- W2019920196 cites W2135601673 @default.
- W2019920196 cites W2144790921 @default.
- W2019920196 cites W2152816052 @default.
- W2019920196 cites W2171782446 @default.
- W2019920196 cites W2337068460 @default.
- W2019920196 cites W567383269 @default.
- W2019920196 doi "https://doi.org/10.1109/tvlsi.2014.2302798" @default.
- W2019920196 hasPublicationYear "2015" @default.
- W2019920196 type Work @default.
- W2019920196 sameAs 2019920196 @default.
- W2019920196 citedByCount "6" @default.
- W2019920196 countsByYear W20199201962015 @default.
- W2019920196 countsByYear W20199201962017 @default.
- W2019920196 countsByYear W20199201962019 @default.
- W2019920196 countsByYear W20199201962021 @default.
- W2019920196 crossrefType "journal-article" @default.
- W2019920196 hasAuthorship W2019920196A5019252201 @default.
- W2019920196 hasAuthorship W2019920196A5031161187 @default.
- W2019920196 hasAuthorship W2019920196A5088246631 @default.
- W2019920196 hasConcept C105795698 @default.
- W2019920196 hasConcept C111335779 @default.
- W2019920196 hasConcept C11413529 @default.
- W2019920196 hasConcept C119599485 @default.
- W2019920196 hasConcept C127413603 @default.
- W2019920196 hasConcept C154945302 @default.
- W2019920196 hasConcept C179799912 @default.
- W2019920196 hasConcept C186370098 @default.
- W2019920196 hasConcept C196216189 @default.
- W2019920196 hasConcept C2524010 @default.
- W2019920196 hasConcept C2780165032 @default.
- W2019920196 hasConcept C33923547 @default.
- W2019920196 hasConcept C41008148 @default.
- W2019920196 hasConcept C45374587 @default.
- W2019920196 hasConcept C46286280 @default.
- W2019920196 hasConcept C47432892 @default.
- W2019920196 hasConceptScore W2019920196C105795698 @default.
- W2019920196 hasConceptScore W2019920196C111335779 @default.
- W2019920196 hasConceptScore W2019920196C11413529 @default.
- W2019920196 hasConceptScore W2019920196C119599485 @default.
- W2019920196 hasConceptScore W2019920196C127413603 @default.
- W2019920196 hasConceptScore W2019920196C154945302 @default.
- W2019920196 hasConceptScore W2019920196C179799912 @default.
- W2019920196 hasConceptScore W2019920196C186370098 @default.
- W2019920196 hasConceptScore W2019920196C196216189 @default.
- W2019920196 hasConceptScore W2019920196C2524010 @default.
- W2019920196 hasConceptScore W2019920196C2780165032 @default.
- W2019920196 hasConceptScore W2019920196C33923547 @default.
- W2019920196 hasConceptScore W2019920196C41008148 @default.
- W2019920196 hasConceptScore W2019920196C45374587 @default.
- W2019920196 hasConceptScore W2019920196C46286280 @default.
- W2019920196 hasConceptScore W2019920196C47432892 @default.
- W2019920196 hasIssue "1" @default.
- W2019920196 hasLocation W20199201961 @default.
- W2019920196 hasOpenAccess W2019920196 @default.
- W2019920196 hasPrimaryLocation W20199201961 @default.
- W2019920196 hasRelatedWork W1985382169 @default.
- W2019920196 hasRelatedWork W2086098668 @default.
- W2019920196 hasRelatedWork W2098045362 @default.
- W2019920196 hasRelatedWork W2144834862 @default.
- W2019920196 hasRelatedWork W2285317880 @default.
- W2019920196 hasRelatedWork W2350756530 @default.
- W2019920196 hasRelatedWork W2360123340 @default.
- W2019920196 hasRelatedWork W2381386178 @default.
- W2019920196 hasRelatedWork W2387588207 @default.
- W2019920196 hasRelatedWork W2552104980 @default.
- W2019920196 hasVolume "23" @default.
- W2019920196 isParatext "false" @default.
- W2019920196 isRetracted "false" @default.
- W2019920196 magId "2019920196" @default.
- W2019920196 workType "article" @default.