Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019920211> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2019920211 abstract "Abstract This paper presents a data driven approach for failure prediction for Electrical Submersible Pumps (ESP). ESP system is well known as an effective artificial lift method which has been applied to about 20 percent of almost one million wells worldwide. Well failures lead to production loss and generally the repair cost for an ESP is usually much higher than those of other artificial lift systems, thus predicting ESP failures before they occur will be valuable. We apply advanced machine learning techniques for predicting ESP failures using electrical and frequency data from the field. Data from real-world assets using ESP systems is analyzed to learn examples of normal well and failure conditions. A generalized Support Vector Machine (SVM) trained with a set of selected features is developed and this approach is tested on real world data. Our results show that this approach works well based on feedback from subject matter experts on the results." @default.
- W2019920211 created "2016-06-24" @default.
- W2019920211 creator A5001239550 @default.
- W2019920211 creator A5013687738 @default.
- W2019920211 creator A5015982779 @default.
- W2019920211 creator A5029803203 @default.
- W2019920211 creator A5040431070 @default.
- W2019920211 creator A5072381348 @default.
- W2019920211 date "2015-04-27" @default.
- W2019920211 modified "2023-10-11" @default.
- W2019920211 title "Data Driven Approach to Failure Prediction for Electrical Submersible Pump Systems" @default.
- W2019920211 cites W1979879056 @default.
- W2019920211 cites W2153635508 @default.
- W2019920211 cites W2483430316 @default.
- W2019920211 doi "https://doi.org/10.2118/174062-ms" @default.
- W2019920211 hasPublicationYear "2015" @default.
- W2019920211 type Work @default.
- W2019920211 sameAs 2019920211 @default.
- W2019920211 citedByCount "21" @default.
- W2019920211 countsByYear W20199202112018 @default.
- W2019920211 countsByYear W20199202112019 @default.
- W2019920211 countsByYear W20199202112020 @default.
- W2019920211 countsByYear W20199202112021 @default.
- W2019920211 countsByYear W20199202112022 @default.
- W2019920211 countsByYear W20199202112023 @default.
- W2019920211 crossrefType "proceedings-article" @default.
- W2019920211 hasAuthorship W2019920211A5001239550 @default.
- W2019920211 hasAuthorship W2019920211A5013687738 @default.
- W2019920211 hasAuthorship W2019920211A5015982779 @default.
- W2019920211 hasAuthorship W2019920211A5029803203 @default.
- W2019920211 hasAuthorship W2019920211A5040431070 @default.
- W2019920211 hasAuthorship W2019920211A5072381348 @default.
- W2019920211 hasConcept C119857082 @default.
- W2019920211 hasConcept C12267149 @default.
- W2019920211 hasConcept C127413603 @default.
- W2019920211 hasConcept C139002025 @default.
- W2019920211 hasConcept C154945302 @default.
- W2019920211 hasConcept C199104240 @default.
- W2019920211 hasConcept C200601418 @default.
- W2019920211 hasConcept C202444582 @default.
- W2019920211 hasConcept C2776873729 @default.
- W2019920211 hasConcept C2777741327 @default.
- W2019920211 hasConcept C33923547 @default.
- W2019920211 hasConcept C41008148 @default.
- W2019920211 hasConcept C51632099 @default.
- W2019920211 hasConcept C78762247 @default.
- W2019920211 hasConcept C9652623 @default.
- W2019920211 hasConceptScore W2019920211C119857082 @default.
- W2019920211 hasConceptScore W2019920211C12267149 @default.
- W2019920211 hasConceptScore W2019920211C127413603 @default.
- W2019920211 hasConceptScore W2019920211C139002025 @default.
- W2019920211 hasConceptScore W2019920211C154945302 @default.
- W2019920211 hasConceptScore W2019920211C199104240 @default.
- W2019920211 hasConceptScore W2019920211C200601418 @default.
- W2019920211 hasConceptScore W2019920211C202444582 @default.
- W2019920211 hasConceptScore W2019920211C2776873729 @default.
- W2019920211 hasConceptScore W2019920211C2777741327 @default.
- W2019920211 hasConceptScore W2019920211C33923547 @default.
- W2019920211 hasConceptScore W2019920211C41008148 @default.
- W2019920211 hasConceptScore W2019920211C51632099 @default.
- W2019920211 hasConceptScore W2019920211C78762247 @default.
- W2019920211 hasConceptScore W2019920211C9652623 @default.
- W2019920211 hasLocation W20199202111 @default.
- W2019920211 hasOpenAccess W2019920211 @default.
- W2019920211 hasPrimaryLocation W20199202111 @default.
- W2019920211 hasRelatedWork W1482513587 @default.
- W2019920211 hasRelatedWork W1996541855 @default.
- W2019920211 hasRelatedWork W2019920211 @default.
- W2019920211 hasRelatedWork W2069509637 @default.
- W2019920211 hasRelatedWork W2148654684 @default.
- W2019920211 hasRelatedWork W2321359405 @default.
- W2019920211 hasRelatedWork W2360948783 @default.
- W2019920211 hasRelatedWork W3009873535 @default.
- W2019920211 hasRelatedWork W3195168932 @default.
- W2019920211 hasRelatedWork W4200416511 @default.
- W2019920211 isParatext "false" @default.
- W2019920211 isRetracted "false" @default.
- W2019920211 magId "2019920211" @default.
- W2019920211 workType "article" @default.