Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019921193> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2019921193 abstract "The classical Henneberg's minimal surface (1875, [3, 4, 11]) was the unique nonorientable example known until 1981, when Meeks [6] exhibited the first example of a nonorientable, regular, complete, minimal surface of finite total curvature -6ir. In this paper, we study the nonorientable, regular, complete minimal surfaces of finite total curvature and give some examples of punctured projective planes regularly and minimally immersed in R3 and Rn. 1. Nonorientable minimal surfaces in Rn. We consider surfaces S in Rn defined by maps X: M -+ R , where M is a two-dimensional manifold. For the study of a nonorientable, connected surface S we take the double surface S given by X: M -? R , where II: M-? M is the oriented two-sheeted covering of M, and X = X o I. We have an involution I: M -M without fixed points and a conformal structure on M such that I is antiholomorphic. We have a representation theorem for the nonorientable minimal strfaces: THEOREM 1. 1. Let S be a nonorientable regular connected minimal surface in Rn. The double surface S is a minimal surface in Rn defined by X: M -Rn, (1.1) X(p) = Re f0(S)dk, PoNP E M, with a = q(j)d' such that I*a = a (that is, I*ak = ?k, 1 < k < n). Conversely, if S is a regular orientable connected minimal surface in Rn given by (1.1) and if there is an antiholomorphic involution I: M -? M without fixed points such that i* a = a, then S is the double surface of a regular nonorientable minimal surface in Rn. The consequences of the condition I*ca = a with respect to the various forms of representation for minimal surfaces in Rn are COROLLARY 1.2 (MEEKS [6]). Let f and g be the functions of Weierstrass 's representation of an orientable, regular, connected minimal surface S in R3, that X(p) =Re 2 g2(f), i(l + g2(s)), 29(f)) d?, polp EM The surface S is the double surface of a nonorientable, regular minimal surface in R3 if and only if 1.2) J(i) g(I(p)) = -l/g(p), p E M, and (1.2) 1 (ii) I*(w) = -92w, W = f(z) dz, for some antiholomorphic involution I: M M without fixed points. Received by the editors October 31, 1985. 1980 Mathiernatic Subect Cakssification (1985 Revtiion). Primary 53A10; Secondary 30A68. (?)1986 American Mathematical Society 0002-9939/86 $1.00 + $.25 per page 629 This content downloaded from 157.55.39.185 on Thu, 26 May 2016 06:29:25 UTC All use subject to http://about.jstor.org/terms 630 M. E. G. G. DE OLIVEIRA COROLLARY 1.3. Let S be an orientable, regular, connected minimal surface in R4 given by :M R4 X(p) = Re (1 + 9192, i(192), 91 92, -i(91 + 92))W, po,p E M. Then, S is the double surface of a nonorientable minimal surface in R4 if and only if, for some antiholomorphic involution I on M without fixed points, 1.3) t (i) gk(I(P)) = -1/gk(p), k = 1,2, and (1.3) l(ii) I*~w = 9192Wi w = f(z) dz, If C(S) is the total curvature of S, we can define the total.curvature of S by (1.4) C(S) = C(S)/2. In what follows, the double surface S will always be connected, complete and of finite total curvature C(S) = 27rfi2. From Chern and Osserman's theorem [1] we have M conformally equivalent to a compact Riemann surface of genus j punctured at i = 2r points {P1,P2, .. iPr,ql .. Iqr }, with I(pj) = qj, I(pj) being the extension of I to pj, 1 < j < r. The function X of (1.1) has poles of order m3 at pj and qj, and r (1.5) ff 2 E mj = 2-y 2. j=j The Chern and Osserman inequality for nonorientable minimal surfaces is (1.6) C(S) < 27r(X(M) r) with x(M) the Euler characteristic of M. A nonorientable version of Gackstatter's theorem [2] gives an estimate for the dimension of a nonorientable, complete, minimal surface S with total curvature C(S) = -27rm, r ends and genus -y: (1.7) Dim(S) < 2m 2-y r + 3." @default.
- W2019921193 created "2016-06-24" @default.
- W2019921193 creator A5029186424 @default.
- W2019921193 date "1986-04-01" @default.
- W2019921193 modified "2023-10-16" @default.
- W2019921193 title "Some new examples of nonorientable minimal surfaces" @default.
- W2019921193 cites W1511679975 @default.
- W2019921193 cites W1587069887 @default.
- W2019921193 cites W1756181857 @default.
- W2019921193 cites W1996000545 @default.
- W2019921193 cites W2015665614 @default.
- W2019921193 cites W2038386198 @default.
- W2019921193 cites W2139502098 @default.
- W2019921193 cites W2145064892 @default.
- W2019921193 doi "https://doi.org/10.1090/s0002-9939-1986-0861765-0" @default.
- W2019921193 hasPublicationYear "1986" @default.
- W2019921193 type Work @default.
- W2019921193 sameAs 2019921193 @default.
- W2019921193 citedByCount "21" @default.
- W2019921193 countsByYear W20199211932013 @default.
- W2019921193 countsByYear W20199211932016 @default.
- W2019921193 countsByYear W20199211932017 @default.
- W2019921193 countsByYear W20199211932018 @default.
- W2019921193 countsByYear W20199211932019 @default.
- W2019921193 countsByYear W20199211932020 @default.
- W2019921193 countsByYear W20199211932023 @default.
- W2019921193 crossrefType "journal-article" @default.
- W2019921193 hasAuthorship W2019921193A5029186424 @default.
- W2019921193 hasBestOaLocation W20199211931 @default.
- W2019921193 hasConcept C114614502 @default.
- W2019921193 hasConcept C167204820 @default.
- W2019921193 hasConcept C202444582 @default.
- W2019921193 hasConcept C2524010 @default.
- W2019921193 hasConcept C2776799497 @default.
- W2019921193 hasConcept C30707913 @default.
- W2019921193 hasConcept C33923547 @default.
- W2019921193 hasConcept C98214594 @default.
- W2019921193 hasConceptScore W2019921193C114614502 @default.
- W2019921193 hasConceptScore W2019921193C167204820 @default.
- W2019921193 hasConceptScore W2019921193C202444582 @default.
- W2019921193 hasConceptScore W2019921193C2524010 @default.
- W2019921193 hasConceptScore W2019921193C2776799497 @default.
- W2019921193 hasConceptScore W2019921193C30707913 @default.
- W2019921193 hasConceptScore W2019921193C33923547 @default.
- W2019921193 hasConceptScore W2019921193C98214594 @default.
- W2019921193 hasLocation W20199211931 @default.
- W2019921193 hasOpenAccess W2019921193 @default.
- W2019921193 hasPrimaryLocation W20199211931 @default.
- W2019921193 hasRelatedWork W1506810517 @default.
- W2019921193 hasRelatedWork W1511679975 @default.
- W2019921193 hasRelatedWork W1533120858 @default.
- W2019921193 hasRelatedWork W1562758923 @default.
- W2019921193 hasRelatedWork W1575192410 @default.
- W2019921193 hasRelatedWork W1963952373 @default.
- W2019921193 hasRelatedWork W1965361119 @default.
- W2019921193 hasRelatedWork W1983566457 @default.
- W2019921193 hasRelatedWork W1994209928 @default.
- W2019921193 hasRelatedWork W2004659135 @default.
- W2019921193 hasRelatedWork W2044195171 @default.
- W2019921193 hasRelatedWork W2060376933 @default.
- W2019921193 hasRelatedWork W2060684759 @default.
- W2019921193 hasRelatedWork W2139502098 @default.
- W2019921193 hasRelatedWork W2284426929 @default.
- W2019921193 hasRelatedWork W2951337454 @default.
- W2019921193 hasRelatedWork W2951945330 @default.
- W2019921193 hasRelatedWork W3101778609 @default.
- W2019921193 hasRelatedWork W3197497113 @default.
- W2019921193 hasRelatedWork W3201308421 @default.
- W2019921193 isParatext "false" @default.
- W2019921193 isRetracted "false" @default.
- W2019921193 magId "2019921193" @default.
- W2019921193 workType "article" @default.