Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019923015> ?p ?o ?g. }
- W2019923015 abstract "Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ∼ 10) were obtained at 85 °C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR field, and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials." @default.
- W2019923015 created "2016-06-24" @default.
- W2019923015 creator A5006759578 @default.
- W2019923015 creator A5009781569 @default.
- W2019923015 creator A5017859742 @default.
- W2019923015 creator A5037280768 @default.
- W2019923015 creator A5053359851 @default.
- W2019923015 creator A5057488067 @default.
- W2019923015 creator A5080745516 @default.
- W2019923015 creator A5083382991 @default.
- W2019923015 date "2013-12-06" @default.
- W2019923015 modified "2023-10-06" @default.
- W2019923015 title "Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains" @default.
- W2019923015 cites W1674096471 @default.
- W2019923015 cites W1964519262 @default.
- W2019923015 cites W1964933396 @default.
- W2019923015 cites W1968157062 @default.
- W2019923015 cites W1970061458 @default.
- W2019923015 cites W1971575041 @default.
- W2019923015 cites W1971575892 @default.
- W2019923015 cites W1978639030 @default.
- W2019923015 cites W1979319761 @default.
- W2019923015 cites W1986243826 @default.
- W2019923015 cites W1987289003 @default.
- W2019923015 cites W1997127364 @default.
- W2019923015 cites W1999292148 @default.
- W2019923015 cites W2004930147 @default.
- W2019923015 cites W2007124986 @default.
- W2019923015 cites W2008995775 @default.
- W2019923015 cites W2010165362 @default.
- W2019923015 cites W2012305672 @default.
- W2019923015 cites W2015185844 @default.
- W2019923015 cites W2019923015 @default.
- W2019923015 cites W2020704270 @default.
- W2019923015 cites W2022298790 @default.
- W2019923015 cites W2027277395 @default.
- W2019923015 cites W2027698367 @default.
- W2019923015 cites W2028244953 @default.
- W2019923015 cites W2029253482 @default.
- W2019923015 cites W2044681632 @default.
- W2019923015 cites W2045240356 @default.
- W2019923015 cites W2049773708 @default.
- W2019923015 cites W2051757654 @default.
- W2019923015 cites W2053669933 @default.
- W2019923015 cites W2054638665 @default.
- W2019923015 cites W2055384254 @default.
- W2019923015 cites W2056143936 @default.
- W2019923015 cites W2058649554 @default.
- W2019923015 cites W2062980651 @default.
- W2019923015 cites W2074009695 @default.
- W2019923015 cites W2074156478 @default.
- W2019923015 cites W2075314987 @default.
- W2019923015 cites W2077438180 @default.
- W2019923015 cites W2085728783 @default.
- W2019923015 cites W2086538789 @default.
- W2019923015 cites W2093932115 @default.
- W2019923015 cites W2099769296 @default.
- W2019923015 cites W2104953195 @default.
- W2019923015 cites W2118606679 @default.
- W2019923015 cites W2136470366 @default.
- W2019923015 cites W2152993117 @default.
- W2019923015 cites W2227514508 @default.
- W2019923015 cites W2314435557 @default.
- W2019923015 cites W3100878877 @default.
- W2019923015 cites W1967154148 @default.
- W2019923015 doi "https://doi.org/10.1063/1.4839735" @default.
- W2019923015 hasPublicationYear "2013" @default.
- W2019923015 type Work @default.
- W2019923015 sameAs 2019923015 @default.
- W2019923015 citedByCount "39" @default.
- W2019923015 countsByYear W20199230152013 @default.
- W2019923015 countsByYear W20199230152014 @default.
- W2019923015 countsByYear W20199230152015 @default.
- W2019923015 countsByYear W20199230152016 @default.
- W2019923015 countsByYear W20199230152017 @default.
- W2019923015 countsByYear W20199230152018 @default.
- W2019923015 countsByYear W20199230152019 @default.
- W2019923015 countsByYear W20199230152020 @default.
- W2019923015 countsByYear W20199230152021 @default.
- W2019923015 countsByYear W20199230152022 @default.
- W2019923015 countsByYear W20199230152023 @default.
- W2019923015 crossrefType "journal-article" @default.
- W2019923015 hasAuthorship W2019923015A5006759578 @default.
- W2019923015 hasAuthorship W2019923015A5009781569 @default.
- W2019923015 hasAuthorship W2019923015A5017859742 @default.
- W2019923015 hasAuthorship W2019923015A5037280768 @default.
- W2019923015 hasAuthorship W2019923015A5053359851 @default.
- W2019923015 hasAuthorship W2019923015A5057488067 @default.
- W2019923015 hasAuthorship W2019923015A5080745516 @default.
- W2019923015 hasAuthorship W2019923015A5083382991 @default.
- W2019923015 hasBestOaLocation W20199230152 @default.
- W2019923015 hasConcept C108619579 @default.
- W2019923015 hasConcept C115260700 @default.
- W2019923015 hasConcept C120665830 @default.
- W2019923015 hasConcept C121332964 @default.
- W2019923015 hasConcept C131888329 @default.
- W2019923015 hasConcept C146088050 @default.
- W2019923015 hasConcept C155672457 @default.
- W2019923015 hasConcept C159985019 @default.
- W2019923015 hasConcept C171250308 @default.