Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019924778> ?p ?o ?g. }
- W2019924778 endingPage "41" @default.
- W2019924778 startingPage "1" @default.
- W2019924778 abstract "A review is presented of the ocean circulation along Australia’s southern shelves and slope. Uniquely, the long, zonal shelf is subject to an equatorward Sverdrup transport that gives rise to the Flinders Current – a small sister to the world’s major Western Boundary Currents. The Flinders Current is strongest near the 600 m isobath where the current speeds can reach 20 cm/s and the bottom boundary layer is upwelling favourable. It is larger in the west but likely intermittent in both space and time due to possibly opposing winds, thermohaline circulation and mesoscale eddies. The Flinders Current may be important to deep upwelling within the ubiquitous canyons of the region. During winter, the Leeuwin Current and local winds act to drive eastward currents that average up to 20–30 cm/s. The currents associated with the intense coastal-trapped wave-field (6–12 day band) are of order 25–30 cm/s and can peak at 80–90 cm/s. Wintertime winds and cooling also lead to downwelling to depths of 200 m or more and the formation of dense coastal water within the Great Australian Bight and the South Australian Sea. Within the Great Australian Bight, the thermohaline circulation associated with this dense water is unknown, but may enhance the eastward shelf-edge, South Australian Current. The dense salty water formed within Spencer Gulf is known to cascade as a gravity current to depths of 200 m off Kangaroo Island. This dense water outflow and meanders in the shelf circulation also fix the locations of a sequence of quasi-permanent mesoscale eddies between the Eyre Peninsula and Portland. During summer, the average coastal winds reverse and surface heating leads to the formation of warm water in the western Great Australian Bight and the South Australian Sea. No significant exchange of shelf water and gulf water appears to occur due to the presence of a dense, nutrient-rich (sub-surface) pool that is upwelled off Kangaroo Island. The winds lead to weak average coastal currents (<10 cm/s) that flow to the north-west. In the Great Australian Bight, the wind stress curl can lead to an anticyclonic circulation gyre that can result in shelf-break downwelling in the western Great Australian Bight and the formation of the eastward, South Australian Current. In the east, upwelling favourable winds and coastal-trapped waves can lead to deep upwelling events off Kangaroo Island and the Bonney Coast that occur over 3–10 days and some 2–4 times a season. The alongshore currents here can be large (∼40 cm/s) and the vertical scales of upwelling are of order 150 m (off Kangaroo Island) and 250 m (off the Bonney Coast). Increasing evidence suggests that El Nino events (4–7 year period) can have a major impact on the winter and summer circulation. These events propagate from the Pacific Ocean and around the shelf-slope wave-guide of West Australia and into the Great Australian Bight. During winter El Nino events, the average shelf currents may be largely shut-down. During summer, the thermocline may be raised by up to 150 m. The nature and role of tides and surface waves is also discussed along with uncertainties in the general circulation and future research." @default.
- W2019924778 created "2016-06-24" @default.
- W2019924778 creator A5003602515 @default.
- W2019924778 creator A5075806780 @default.
- W2019924778 date "2007-10-01" @default.
- W2019924778 modified "2023-10-17" @default.
- W2019924778 title "A review of the shelf-slope circulation along Australia’s southern shelves: Cape Leeuwin to Portland" @default.
- W2019924778 cites W1501352021 @default.
- W2019924778 cites W1606480430 @default.
- W2019924778 cites W1979892443 @default.
- W2019924778 cites W1985142385 @default.
- W2019924778 cites W1996687064 @default.
- W2019924778 cites W2000502453 @default.
- W2019924778 cites W2003262105 @default.
- W2019924778 cites W2004270895 @default.
- W2019924778 cites W2006793473 @default.
- W2019924778 cites W2014733438 @default.
- W2019924778 cites W2017087442 @default.
- W2019924778 cites W2020791254 @default.
- W2019924778 cites W2027421977 @default.
- W2019924778 cites W2029704390 @default.
- W2019924778 cites W2032414766 @default.
- W2019924778 cites W2039991957 @default.
- W2019924778 cites W2040836404 @default.
- W2019924778 cites W2042515410 @default.
- W2019924778 cites W2043747201 @default.
- W2019924778 cites W2045176969 @default.
- W2019924778 cites W2046971108 @default.
- W2019924778 cites W2051257938 @default.
- W2019924778 cites W2053773428 @default.
- W2019924778 cites W2054553774 @default.
- W2019924778 cites W2054605792 @default.
- W2019924778 cites W2055741486 @default.
- W2019924778 cites W2056723114 @default.
- W2019924778 cites W2057450199 @default.
- W2019924778 cites W2062863192 @default.
- W2019924778 cites W2064677883 @default.
- W2019924778 cites W2065333897 @default.
- W2019924778 cites W2065752111 @default.
- W2019924778 cites W2080209529 @default.
- W2019924778 cites W2080404454 @default.
- W2019924778 cites W2080719486 @default.
- W2019924778 cites W2081840853 @default.
- W2019924778 cites W2083216534 @default.
- W2019924778 cites W2086662943 @default.
- W2019924778 cites W2088915632 @default.
- W2019924778 cites W2090201954 @default.
- W2019924778 cites W2095570206 @default.
- W2019924778 cites W2119172733 @default.
- W2019924778 cites W2124687988 @default.
- W2019924778 cites W2125046126 @default.
- W2019924778 cites W2127378441 @default.
- W2019924778 cites W2132290562 @default.
- W2019924778 cites W2132329141 @default.
- W2019924778 cites W2133773252 @default.
- W2019924778 cites W2136895641 @default.
- W2019924778 cites W2173251738 @default.
- W2019924778 cites W2173634245 @default.
- W2019924778 cites W2173720459 @default.
- W2019924778 cites W2480994108 @default.
- W2019924778 cites W2491894668 @default.
- W2019924778 cites W2504984048 @default.
- W2019924778 doi "https://doi.org/10.1016/j.pocean.2007.07.001" @default.
- W2019924778 hasPublicationYear "2007" @default.
- W2019924778 type Work @default.
- W2019924778 sameAs 2019924778 @default.
- W2019924778 citedByCount "200" @default.
- W2019924778 countsByYear W20199247782012 @default.
- W2019924778 countsByYear W20199247782013 @default.
- W2019924778 countsByYear W20199247782014 @default.
- W2019924778 countsByYear W20199247782015 @default.
- W2019924778 countsByYear W20199247782016 @default.
- W2019924778 countsByYear W20199247782017 @default.
- W2019924778 countsByYear W20199247782018 @default.
- W2019924778 countsByYear W20199247782019 @default.
- W2019924778 countsByYear W20199247782020 @default.
- W2019924778 countsByYear W20199247782021 @default.
- W2019924778 countsByYear W20199247782022 @default.
- W2019924778 countsByYear W20199247782023 @default.
- W2019924778 crossrefType "journal-article" @default.
- W2019924778 hasAuthorship W2019924778A5003602515 @default.
- W2019924778 hasAuthorship W2019924778A5075806780 @default.
- W2019924778 hasConcept C111368507 @default.
- W2019924778 hasConcept C114793014 @default.
- W2019924778 hasConcept C119601563 @default.
- W2019924778 hasConcept C127313418 @default.
- W2019924778 hasConcept C135559958 @default.
- W2019924778 hasConcept C140302290 @default.
- W2019924778 hasConcept C148043351 @default.
- W2019924778 hasConcept C149348798 @default.
- W2019924778 hasConcept C153294291 @default.
- W2019924778 hasConcept C179065325 @default.
- W2019924778 hasConcept C184751465 @default.
- W2019924778 hasConcept C187599188 @default.
- W2019924778 hasConcept C196558001 @default.
- W2019924778 hasConcept C205649164 @default.
- W2019924778 hasConcept C60069189 @default.
- W2019924778 hasConcept C67320510 @default.