Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019927399> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2019927399 endingPage "11" @default.
- W2019927399 startingPage "1" @default.
- W2019927399 abstract "We study the analytic property of the (generalized) quadratic derivative Ginzburg-Landau equation<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M1><mml:mo stretchy=false>(</mml:mo><mml:mrow><mml:mrow><mml:mn fontstyle=italic>1</mml:mn></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mn fontstyle=italic>2</mml:mn></mml:mrow></mml:mrow><mml:mo>⩽</mml:mo><mml:mi>α</mml:mi><mml:mo>⩽</mml:mo><mml:mn fontstyle=italic>1</mml:mn><mml:mo stretchy=false>)</mml:mo></mml:math>in any spatial dimension<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M2><mml:mi>n</mml:mi><mml:mo>⩾</mml:mo><mml:mn fontstyle=italic>1</mml:mn></mml:math>with rough initial data. For<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M3><mml:mrow><mml:mrow><mml:mn fontstyle=italic>1</mml:mn></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mn fontstyle=italic>2</mml:mn></mml:mrow></mml:mrow><mml:mo><</mml:mo><mml:mi>α</mml:mi><mml:mo>⩽</mml:mo><mml:mn fontstyle=italic>1</mml:mn></mml:math>, we prove the analyticity of local solutions to the (generalized) quadratic derivative Ginzburg-Landau equation with large rough initial data in modulation spaces<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M4><mml:msubsup><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mn fontstyle=italic>1</mml:mn></mml:mrow><mml:mrow><mml:mn fontstyle=italic>1</mml:mn><mml:mo>-</mml:mo><mml:mn fontstyle=italic>2</mml:mn><mml:mi>α</mml:mi></mml:mrow></mml:msubsup><mml:mo stretchy=false>(</mml:mo><mml:mn fontstyle=italic>1</mml:mn><mml:mo>⩽</mml:mo><mml:mi>p</mml:mi><mml:mo>⩽</mml:mo><mml:mi>∞</mml:mi><mml:mo stretchy=false>)</mml:mo></mml:math>. For<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M5><mml:mi>α</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn fontstyle=italic>1</mml:mn></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mn fontstyle=italic>2</mml:mn></mml:mrow></mml:mrow></mml:math>, we obtain the analytic regularity of global solutions to the fractional quadratic derivative Ginzburg-Landau equation with small initial data in<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M6><mml:mrow><mml:msubsup><mml:mover accent=true><mml:mi>B</mml:mi><mml:mo>˙</mml:mo></mml:mover><mml:mrow><mml:mi>∞</mml:mi><mml:mo>,</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mn>0</mml:mn></mml:msubsup></mml:mrow></mml:math><mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M7><mml:mo stretchy=false>(</mml:mo><mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=false>)</mml:mo><mml:mo>∩</mml:mo><mml:msubsup><mml:mrow><mml:mi>M</mml:mi></mml:mrow><mml:mrow><mml:mi>∞</mml:mi><mml:mo>,</mml:mo><mml:mn fontstyle=italic>1</mml:mn></mml:mrow><mml:mrow><mml:mn fontstyle=italic>0</mml:mn></mml:mrow></mml:msubsup><mml:mo stretchy=false>(</mml:mo><mml:msup><mml:mrow><mml:mi>ℝ</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy=false>)</mml:mo></mml:math>. The strategy is to develop uniform and dyadic exponential decay estimates for the generalized Ginzburg-Landau semigroup<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=M8><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mo>-</mml:mo><mml:mfenced separators=|><mml:mrow><mml:mi>a</mml:mi><mml:mo>+</mml:mo><mml:mi>i</mml:mi></mml:mrow></mml:mfenced><mml:mi>t</mml:mi><mml:msup><mml:mrow><mml:mfenced separators=|><mml:mrow><mml:mo>-</mml:mo><mml:mo>Δ</mml:mo></mml:mrow></mml:mfenced></mml:mrow><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:mrow></mml:math>to overcome the derivative in the nonlinear term." @default.
- W2019927399 created "2016-06-24" @default.
- W2019927399 creator A5058052724 @default.
- W2019927399 date "2014-01-01" @default.
- W2019927399 modified "2023-09-27" @default.
- W2019927399 title "On the Analyticity for the Generalized Quadratic Derivative Complex Ginzburg-Landau Equation" @default.
- W2019927399 cites W1989725652 @default.
- W2019927399 cites W1991200066 @default.
- W2019927399 cites W1998339810 @default.
- W2019927399 cites W2014740926 @default.
- W2019927399 cites W2015668743 @default.
- W2019927399 cites W2035996305 @default.
- W2019927399 cites W2053514438 @default.
- W2019927399 cites W2060155104 @default.
- W2019927399 cites W3101940625 @default.
- W2019927399 cites W3105823702 @default.
- W2019927399 cites W4213021285 @default.
- W2019927399 cites W4256340197 @default.
- W2019927399 doi "https://doi.org/10.1155/2014/607028" @default.
- W2019927399 hasPublicationYear "2014" @default.
- W2019927399 type Work @default.
- W2019927399 sameAs 2019927399 @default.
- W2019927399 citedByCount "1" @default.
- W2019927399 countsByYear W20199273992019 @default.
- W2019927399 crossrefType "journal-article" @default.
- W2019927399 hasAuthorship W2019927399A5058052724 @default.
- W2019927399 hasBestOaLocation W20199273991 @default.
- W2019927399 hasConcept C11413529 @default.
- W2019927399 hasConcept C41008148 @default.
- W2019927399 hasConceptScore W2019927399C11413529 @default.
- W2019927399 hasConceptScore W2019927399C41008148 @default.
- W2019927399 hasLocation W20199273991 @default.
- W2019927399 hasLocation W20199273992 @default.
- W2019927399 hasLocation W20199273993 @default.
- W2019927399 hasOpenAccess W2019927399 @default.
- W2019927399 hasPrimaryLocation W20199273991 @default.
- W2019927399 hasRelatedWork W2051487156 @default.
- W2019927399 hasRelatedWork W2052122378 @default.
- W2019927399 hasRelatedWork W2053286651 @default.
- W2019927399 hasRelatedWork W2073681303 @default.
- W2019927399 hasRelatedWork W2317200988 @default.
- W2019927399 hasRelatedWork W2544423928 @default.
- W2019927399 hasRelatedWork W2779362453 @default.
- W2019927399 hasRelatedWork W2181413294 @default.
- W2019927399 hasRelatedWork W2181743346 @default.
- W2019927399 hasRelatedWork W2187401768 @default.
- W2019927399 hasVolume "2014" @default.
- W2019927399 isParatext "false" @default.
- W2019927399 isRetracted "false" @default.
- W2019927399 magId "2019927399" @default.
- W2019927399 workType "article" @default.