Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019927695> ?p ?o ?g. }
- W2019927695 endingPage "e0121423" @default.
- W2019927695 startingPage "e0121423" @default.
- W2019927695 abstract "We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations." @default.
- W2019927695 created "2016-06-24" @default.
- W2019927695 creator A5033592681 @default.
- W2019927695 creator A5049541486 @default.
- W2019927695 creator A5071024410 @default.
- W2019927695 creator A5076161191 @default.
- W2019927695 date "2015-04-28" @default.
- W2019927695 modified "2023-10-13" @default.
- W2019927695 title "Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices" @default.
- W2019927695 cites W1520168181 @default.
- W2019927695 cites W1540403413 @default.
- W2019927695 cites W1540632243 @default.
- W2019927695 cites W1667925016 @default.
- W2019927695 cites W1971392829 @default.
- W2019927695 cites W1974200742 @default.
- W2019927695 cites W1977983964 @default.
- W2019927695 cites W1986964250 @default.
- W2019927695 cites W1989581163 @default.
- W2019927695 cites W1994048562 @default.
- W2019927695 cites W2006848113 @default.
- W2019927695 cites W2019543362 @default.
- W2019927695 cites W2026366832 @default.
- W2019927695 cites W2032236594 @default.
- W2019927695 cites W2048192550 @default.
- W2019927695 cites W2056583019 @default.
- W2019927695 cites W2068787860 @default.
- W2019927695 cites W2070319354 @default.
- W2019927695 cites W2082088153 @default.
- W2019927695 cites W2096597330 @default.
- W2019927695 cites W2098093338 @default.
- W2019927695 cites W2099515730 @default.
- W2019927695 cites W2112220340 @default.
- W2019927695 cites W2119647652 @default.
- W2019927695 cites W2124195644 @default.
- W2019927695 cites W2124757684 @default.
- W2019927695 cites W2133323250 @default.
- W2019927695 cites W2142638745 @default.
- W2019927695 cites W2152502807 @default.
- W2019927695 cites W2962777248 @default.
- W2019927695 cites W4206551434 @default.
- W2019927695 doi "https://doi.org/10.1371/journal.pone.0121423" @default.
- W2019927695 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4412494" @default.
- W2019927695 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25919667" @default.
- W2019927695 hasPublicationYear "2015" @default.
- W2019927695 type Work @default.
- W2019927695 sameAs 2019927695 @default.
- W2019927695 citedByCount "32" @default.
- W2019927695 countsByYear W20199276952016 @default.
- W2019927695 countsByYear W20199276952017 @default.
- W2019927695 countsByYear W20199276952018 @default.
- W2019927695 countsByYear W20199276952019 @default.
- W2019927695 countsByYear W20199276952020 @default.
- W2019927695 countsByYear W20199276952021 @default.
- W2019927695 countsByYear W20199276952022 @default.
- W2019927695 countsByYear W20199276952023 @default.
- W2019927695 crossrefType "journal-article" @default.
- W2019927695 hasAuthorship W2019927695A5033592681 @default.
- W2019927695 hasAuthorship W2019927695A5049541486 @default.
- W2019927695 hasAuthorship W2019927695A5071024410 @default.
- W2019927695 hasAuthorship W2019927695A5076161191 @default.
- W2019927695 hasBestOaLocation W20199276951 @default.
- W2019927695 hasConcept C106487976 @default.
- W2019927695 hasConcept C11413529 @default.
- W2019927695 hasConcept C121332964 @default.
- W2019927695 hasConcept C138885662 @default.
- W2019927695 hasConcept C158693339 @default.
- W2019927695 hasConcept C159985019 @default.
- W2019927695 hasConcept C162324750 @default.
- W2019927695 hasConcept C192562407 @default.
- W2019927695 hasConcept C207390915 @default.
- W2019927695 hasConcept C2524010 @default.
- W2019927695 hasConcept C2777303404 @default.
- W2019927695 hasConcept C28826006 @default.
- W2019927695 hasConcept C33923547 @default.
- W2019927695 hasConcept C40222840 @default.
- W2019927695 hasConcept C41895202 @default.
- W2019927695 hasConcept C49712288 @default.
- W2019927695 hasConcept C50522688 @default.
- W2019927695 hasConcept C62520636 @default.
- W2019927695 hasConceptScore W2019927695C106487976 @default.
- W2019927695 hasConceptScore W2019927695C11413529 @default.
- W2019927695 hasConceptScore W2019927695C121332964 @default.
- W2019927695 hasConceptScore W2019927695C138885662 @default.
- W2019927695 hasConceptScore W2019927695C158693339 @default.
- W2019927695 hasConceptScore W2019927695C159985019 @default.
- W2019927695 hasConceptScore W2019927695C162324750 @default.
- W2019927695 hasConceptScore W2019927695C192562407 @default.
- W2019927695 hasConceptScore W2019927695C207390915 @default.
- W2019927695 hasConceptScore W2019927695C2524010 @default.
- W2019927695 hasConceptScore W2019927695C2777303404 @default.
- W2019927695 hasConceptScore W2019927695C28826006 @default.
- W2019927695 hasConceptScore W2019927695C33923547 @default.
- W2019927695 hasConceptScore W2019927695C40222840 @default.
- W2019927695 hasConceptScore W2019927695C41895202 @default.
- W2019927695 hasConceptScore W2019927695C49712288 @default.
- W2019927695 hasConceptScore W2019927695C50522688 @default.
- W2019927695 hasConceptScore W2019927695C62520636 @default.
- W2019927695 hasIssue "4" @default.