Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019931533> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2019931533 endingPage "251" @default.
- W2019931533 startingPage "233" @default.
- W2019931533 abstract "The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement surface deflections with very low average errors comparable with those obtained directly from the finite element analyses." @default.
- W2019931533 created "2016-06-24" @default.
- W2019931533 creator A5003456006 @default.
- W2019931533 creator A5014614872 @default.
- W2019931533 creator A5058036849 @default.
- W2019931533 creator A5087182950 @default.
- W2019931533 date "2013-09-01" @default.
- W2019931533 modified "2023-09-25" @default.
- W2019931533 title "Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks" @default.
- W2019931533 cites W1498436455 @default.
- W2019931533 cites W1552113367 @default.
- W2019931533 cites W1604267053 @default.
- W2019931533 cites W2009303670 @default.
- W2019931533 cites W2019918594 @default.
- W2019931533 doi "https://doi.org/10.1080/10589759.2012.742084" @default.
- W2019931533 hasPublicationYear "2013" @default.
- W2019931533 type Work @default.
- W2019931533 sameAs 2019931533 @default.
- W2019931533 citedByCount "6" @default.
- W2019931533 countsByYear W20199315332016 @default.
- W2019931533 countsByYear W20199315332017 @default.
- W2019931533 countsByYear W20199315332019 @default.
- W2019931533 countsByYear W20199315332021 @default.
- W2019931533 countsByYear W20199315332022 @default.
- W2019931533 crossrefType "journal-article" @default.
- W2019931533 hasAuthorship W2019931533A5003456006 @default.
- W2019931533 hasAuthorship W2019931533A5014614872 @default.
- W2019931533 hasAuthorship W2019931533A5058036849 @default.
- W2019931533 hasAuthorship W2019931533A5087182950 @default.
- W2019931533 hasBestOaLocation W20199315332 @default.
- W2019931533 hasConcept C120665830 @default.
- W2019931533 hasConcept C121332964 @default.
- W2019931533 hasConcept C126838900 @default.
- W2019931533 hasConcept C127413603 @default.
- W2019931533 hasConcept C134306372 @default.
- W2019931533 hasConcept C135252773 @default.
- W2019931533 hasConcept C154945302 @default.
- W2019931533 hasConcept C159985019 @default.
- W2019931533 hasConcept C168056786 @default.
- W2019931533 hasConcept C182377489 @default.
- W2019931533 hasConcept C192562407 @default.
- W2019931533 hasConcept C2776247918 @default.
- W2019931533 hasConcept C2780656047 @default.
- W2019931533 hasConcept C2781355719 @default.
- W2019931533 hasConcept C33923547 @default.
- W2019931533 hasConcept C40084718 @default.
- W2019931533 hasConcept C41008148 @default.
- W2019931533 hasConcept C50644808 @default.
- W2019931533 hasConcept C56529433 @default.
- W2019931533 hasConcept C66938386 @default.
- W2019931533 hasConcept C71924100 @default.
- W2019931533 hasConceptScore W2019931533C120665830 @default.
- W2019931533 hasConceptScore W2019931533C121332964 @default.
- W2019931533 hasConceptScore W2019931533C126838900 @default.
- W2019931533 hasConceptScore W2019931533C127413603 @default.
- W2019931533 hasConceptScore W2019931533C134306372 @default.
- W2019931533 hasConceptScore W2019931533C135252773 @default.
- W2019931533 hasConceptScore W2019931533C154945302 @default.
- W2019931533 hasConceptScore W2019931533C159985019 @default.
- W2019931533 hasConceptScore W2019931533C168056786 @default.
- W2019931533 hasConceptScore W2019931533C182377489 @default.
- W2019931533 hasConceptScore W2019931533C192562407 @default.
- W2019931533 hasConceptScore W2019931533C2776247918 @default.
- W2019931533 hasConceptScore W2019931533C2780656047 @default.
- W2019931533 hasConceptScore W2019931533C2781355719 @default.
- W2019931533 hasConceptScore W2019931533C33923547 @default.
- W2019931533 hasConceptScore W2019931533C40084718 @default.
- W2019931533 hasConceptScore W2019931533C41008148 @default.
- W2019931533 hasConceptScore W2019931533C50644808 @default.
- W2019931533 hasConceptScore W2019931533C56529433 @default.
- W2019931533 hasConceptScore W2019931533C66938386 @default.
- W2019931533 hasConceptScore W2019931533C71924100 @default.
- W2019931533 hasIssue "3" @default.
- W2019931533 hasLocation W20199315331 @default.
- W2019931533 hasLocation W20199315332 @default.
- W2019931533 hasOpenAccess W2019931533 @default.
- W2019931533 hasPrimaryLocation W20199315331 @default.
- W2019931533 hasRelatedWork W1951634785 @default.
- W2019931533 hasRelatedWork W201817606 @default.
- W2019931533 hasRelatedWork W2126480261 @default.
- W2019931533 hasRelatedWork W2144047450 @default.
- W2019931533 hasRelatedWork W2150763376 @default.
- W2019931533 hasRelatedWork W2323299841 @default.
- W2019931533 hasRelatedWork W4221109342 @default.
- W2019931533 hasRelatedWork W609246794 @default.
- W2019931533 hasRelatedWork W642233291 @default.
- W2019931533 hasRelatedWork W18000062 @default.
- W2019931533 hasVolume "28" @default.
- W2019931533 isParatext "false" @default.
- W2019931533 isRetracted "false" @default.
- W2019931533 magId "2019931533" @default.
- W2019931533 workType "article" @default.