Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019935641> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2019935641 endingPage "452" @default.
- W2019935641 startingPage "429" @default.
- W2019935641 abstract "Let be a smooth, projective, geometrically irreducible surface over a perfect field F. Throughout this paper, it will be assumed that the geometric genus pg and the irregularity q of both vanish. Denote the separable closure of F by F. Let X=X| be the surface obtained from by base extension. It will also be assumed that the group Ao(X) of rational equivalence classes of zero cycles of degree zero on X vanishes. This is a technical hypothesis which could presumably be eliminated at the expense of working with Ker(Ao(X)~Ao(X)). For want of a better name, and for ease in stating various results, any surface which satisfies these three hypotheses will be called a pseudo-rational surface. Bloch [2] has conjectured that the vanishing of Ao(X) should follow from the assumption that Po = q = 0. This was proven by Bloch, Kas, and Lieberman [5] for all such surfaces which are not of general type; i.e., which have Kodaira dimension less than 2. It has also been proven for particular surfaces of general type by Inose and Mizukami [23], Barlow [1], and Keum [25]. Consequently, the class of pseudo-rational surfaces includes: rational surfaces, Enriques surfaces, elliptic surfaces with q=0, the classical Godeaux surface, Burniat-Inoue surfaces, Campedelti surfaces, and the surfaces of Barlow and of Keum. This paper will study Ao(X) for pseudo-rational surfaces defined over fields of number theoretic interest. Bloch [4] introduced K-theoretic techniques into the study of zero cycles on rational surfaces. His work was extended [7, 12, 15, 27, 28, 32, 36] to achieve a thorough understanding of such cycles. Colliot-Th616ne and Raskind [10] developed this machinery further to study codimension two cycles on any variety. The author [14] applied these techniques to Enriques surfaces. Raskind [30] used them to study zero cycles on pseudo-rational surfaces. One of the main results of this paper is a new proof of the following theorem of Raskind [31]." @default.
- W2019935641 created "2016-06-24" @default.
- W2019935641 creator A5066837969 @default.
- W2019935641 date "1991-03-01" @default.
- W2019935641 modified "2023-10-14" @default.
- W2019935641 title "The arithmetic of zero cycles on surfaces with geometric genus and irregularity zero" @default.
- W2019935641 cites W1563441063 @default.
- W2019935641 cites W1968597742 @default.
- W2019935641 cites W1981412736 @default.
- W2019935641 cites W1989885639 @default.
- W2019935641 cites W2008610681 @default.
- W2019935641 cites W2009354248 @default.
- W2019935641 cites W201935133 @default.
- W2019935641 cites W2020705428 @default.
- W2019935641 cites W2028521966 @default.
- W2019935641 cites W2032820212 @default.
- W2019935641 cites W2057219620 @default.
- W2019935641 cites W2066147151 @default.
- W2019935641 cites W2067327357 @default.
- W2019935641 cites W2076973789 @default.
- W2019935641 cites W2078144527 @default.
- W2019935641 cites W2090500404 @default.
- W2019935641 cites W2255722026 @default.
- W2019935641 cites W2314530875 @default.
- W2019935641 cites W2326691862 @default.
- W2019935641 cites W2565579448 @default.
- W2019935641 cites W2917310609 @default.
- W2019935641 cites W4247556508 @default.
- W2019935641 cites W4248269519 @default.
- W2019935641 cites W4252551223 @default.
- W2019935641 cites W57702914 @default.
- W2019935641 doi "https://doi.org/10.1007/bf01445218" @default.
- W2019935641 hasPublicationYear "1991" @default.
- W2019935641 type Work @default.
- W2019935641 sameAs 2019935641 @default.
- W2019935641 citedByCount "7" @default.
- W2019935641 countsByYear W20199356412015 @default.
- W2019935641 countsByYear W20199356412017 @default.
- W2019935641 crossrefType "journal-article" @default.
- W2019935641 hasAuthorship W2019935641A5066837969 @default.
- W2019935641 hasBestOaLocation W20199356412 @default.
- W2019935641 hasConcept C114614502 @default.
- W2019935641 hasConcept C138885662 @default.
- W2019935641 hasConcept C157369684 @default.
- W2019935641 hasConcept C202444582 @default.
- W2019935641 hasConcept C2780813799 @default.
- W2019935641 hasConcept C33923547 @default.
- W2019935641 hasConcept C41895202 @default.
- W2019935641 hasConcept C86803240 @default.
- W2019935641 hasConcept C90856448 @default.
- W2019935641 hasConcept C94375191 @default.
- W2019935641 hasConceptScore W2019935641C114614502 @default.
- W2019935641 hasConceptScore W2019935641C138885662 @default.
- W2019935641 hasConceptScore W2019935641C157369684 @default.
- W2019935641 hasConceptScore W2019935641C202444582 @default.
- W2019935641 hasConceptScore W2019935641C2780813799 @default.
- W2019935641 hasConceptScore W2019935641C33923547 @default.
- W2019935641 hasConceptScore W2019935641C41895202 @default.
- W2019935641 hasConceptScore W2019935641C86803240 @default.
- W2019935641 hasConceptScore W2019935641C90856448 @default.
- W2019935641 hasConceptScore W2019935641C94375191 @default.
- W2019935641 hasIssue "1" @default.
- W2019935641 hasLocation W20199356411 @default.
- W2019935641 hasLocation W20199356412 @default.
- W2019935641 hasOpenAccess W2019935641 @default.
- W2019935641 hasPrimaryLocation W20199356411 @default.
- W2019935641 hasRelatedWork W2046049376 @default.
- W2019935641 hasRelatedWork W2167154330 @default.
- W2019935641 hasRelatedWork W2785428285 @default.
- W2019935641 hasRelatedWork W2792779451 @default.
- W2019935641 hasRelatedWork W3033936578 @default.
- W2019935641 hasRelatedWork W3137286201 @default.
- W2019935641 hasRelatedWork W3196741607 @default.
- W2019935641 hasRelatedWork W4241097716 @default.
- W2019935641 hasRelatedWork W4287960386 @default.
- W2019935641 hasRelatedWork W1664872295 @default.
- W2019935641 hasVolume "291" @default.
- W2019935641 isParatext "false" @default.
- W2019935641 isRetracted "false" @default.
- W2019935641 magId "2019935641" @default.
- W2019935641 workType "article" @default.