Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019936070> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2019936070 abstract "THE EFFECT OF DISPERSIVE MIXING ON SCALING LABORATORY MICELLAR FLOODS TO RESERVOIR DIMENSIONS Abstract For economic reasons, only a limited slug of a relatively expensive micellar fluid (followed by a polymer-water mobility bank) can be injected to polymer-water mobility bank) can be injected to displace oil with the current micellar flooding process. Once a micellar slug is injected, its process. Once a micellar slug is injected, its composition does not remain the same; instead the composition changes as the slug propagates. Scaling the micellar flooding process can be thought of as using laboratory tests which consider the compositional changes that occur as the slug propagates to determine the minimum size slug necessary for effective displacement of oil throughout the swept portion of the reservoir. portion of the reservoir. Previous work has shown that surfactant retention is an important cause of compositional change which results in loss of displacement efficiency with a micellar slug. Dilution of a micellar slug (due to dispersive mixing) can be an equally important cause of poor displacement efficiency. In scaling a micellar flood, the dispersivity of the reservoir must be estimated from tracer tests. The ability of the micellar fluid to recover oil when it is diluted is a critical design criterion when reservoir dispersivity is large. Laboratory tests in short reservoir cores can be appropriate to simulate performance in a reservoir when the reservoir performance in a reservoir when the reservoir dispersivity is greater than the dispersivity of the reservoir cores. Berea sandstone which has very low dispersivity is not an appropriate porous medium in which to study the scaling of a micellar flood. Introduction Tertiary recovery processes using micellar fluids to mobilize residual oil require that the injected chemicals be propagated at a concentration such that the micellar fluid is either miscible with the oil or increases the capillary number (the ratio of viscous to interfacial forces) to a level suitable for miscible-like oil displacement. Even if oil displacement by a micellar fluid is initially miscible, the displacement usually becomes immiscible due to chemical loss and dispersive mixing which reduce the concentration of the chemicals in the micellar slug. If the capillary number during the immiscible displacement is high enough, the displacement will be miscible-like; the immiscible phases will flow without mutual interference phases will flow without mutual interference resulting in very efficient oil displacement. Designing a micellar flood can thus be simplified to the following:Formulating, in the laboratory, a micellarfluid which is miscible or has a highcapillary number with the reservoir oil.Scaling the laboratory performance to reservoir dimensions. This latter step can be thought of as using laboratory measurements to determine the minimum size slug of micellar fluid which will maintain a chemical composition that remains miscible or miscible-like through the swept portion of the reservoir. Only relatively short (usually less than 0.15m) cores of reservoir rock are available for laboratory tests. Therefore, extremely long core tests in reservoir rock are usually not possible, but one must still be able to scale the effect of system length. The objective of this paper is to demonstrate the combined effect on oil recovery of surfactant retention and dilution of the micellar slug (due to dispersive mixing) as a function of system length. Background Compositional simulators have been developed and applied to predict performance of micellar floods in laboratory cores; however, simulators based on simplified concepts are often used in predicting micellar flood performance in a reservoir. predicting micellar flood performance in a reservoir. A stratified reservoir simulator based on streamtube concepts was used by Yanosik et al. to predict performance of the Sloss tertiary micellar pilot. performance of the Sloss tertiary micellar pilot." @default.
- W2019936070 created "2016-06-24" @default.
- W2019936070 creator A5064155977 @default.
- W2019936070 creator A5076397127 @default.
- W2019936070 date "1980-04-20" @default.
- W2019936070 modified "2023-09-25" @default.
- W2019936070 title "The Effect Of Dispersive Mixing On Scaling Laboratory Micellar Floods" @default.
- W2019936070 doi "https://doi.org/10.2118/8828-ms" @default.
- W2019936070 hasPublicationYear "1980" @default.
- W2019936070 type Work @default.
- W2019936070 sameAs 2019936070 @default.
- W2019936070 citedByCount "5" @default.
- W2019936070 countsByYear W20199360702012 @default.
- W2019936070 countsByYear W20199360702013 @default.
- W2019936070 crossrefType "proceedings-article" @default.
- W2019936070 hasAuthorship W2019936070A5064155977 @default.
- W2019936070 hasAuthorship W2019936070A5076397127 @default.
- W2019936070 hasConcept C105569014 @default.
- W2019936070 hasConcept C107551265 @default.
- W2019936070 hasConcept C113215200 @default.
- W2019936070 hasConcept C121332964 @default.
- W2019936070 hasConcept C127313418 @default.
- W2019936070 hasConcept C138777275 @default.
- W2019936070 hasConcept C15744967 @default.
- W2019936070 hasConcept C187320778 @default.
- W2019936070 hasConcept C192562407 @default.
- W2019936070 hasConcept C2524010 @default.
- W2019936070 hasConcept C2779681308 @default.
- W2019936070 hasConcept C33923547 @default.
- W2019936070 hasConcept C39432304 @default.
- W2019936070 hasConcept C542102704 @default.
- W2019936070 hasConcept C62520636 @default.
- W2019936070 hasConcept C6648577 @default.
- W2019936070 hasConcept C78762247 @default.
- W2019936070 hasConcept C96618451 @default.
- W2019936070 hasConcept C97355855 @default.
- W2019936070 hasConcept C99844830 @default.
- W2019936070 hasConceptScore W2019936070C105569014 @default.
- W2019936070 hasConceptScore W2019936070C107551265 @default.
- W2019936070 hasConceptScore W2019936070C113215200 @default.
- W2019936070 hasConceptScore W2019936070C121332964 @default.
- W2019936070 hasConceptScore W2019936070C127313418 @default.
- W2019936070 hasConceptScore W2019936070C138777275 @default.
- W2019936070 hasConceptScore W2019936070C15744967 @default.
- W2019936070 hasConceptScore W2019936070C187320778 @default.
- W2019936070 hasConceptScore W2019936070C192562407 @default.
- W2019936070 hasConceptScore W2019936070C2524010 @default.
- W2019936070 hasConceptScore W2019936070C2779681308 @default.
- W2019936070 hasConceptScore W2019936070C33923547 @default.
- W2019936070 hasConceptScore W2019936070C39432304 @default.
- W2019936070 hasConceptScore W2019936070C542102704 @default.
- W2019936070 hasConceptScore W2019936070C62520636 @default.
- W2019936070 hasConceptScore W2019936070C6648577 @default.
- W2019936070 hasConceptScore W2019936070C78762247 @default.
- W2019936070 hasConceptScore W2019936070C96618451 @default.
- W2019936070 hasConceptScore W2019936070C97355855 @default.
- W2019936070 hasConceptScore W2019936070C99844830 @default.
- W2019936070 hasLocation W20199360701 @default.
- W2019936070 hasOpenAccess W2019936070 @default.
- W2019936070 hasPrimaryLocation W20199360701 @default.
- W2019936070 hasRelatedWork W1572021445 @default.
- W2019936070 hasRelatedWork W1963553045 @default.
- W2019936070 hasRelatedWork W2063732915 @default.
- W2019936070 hasRelatedWork W2111548242 @default.
- W2019936070 hasRelatedWork W2315192567 @default.
- W2019936070 hasRelatedWork W2381879448 @default.
- W2019936070 hasRelatedWork W2387107293 @default.
- W2019936070 hasRelatedWork W2752558897 @default.
- W2019936070 hasRelatedWork W2942880114 @default.
- W2019936070 hasRelatedWork W4200226848 @default.
- W2019936070 isParatext "false" @default.
- W2019936070 isRetracted "false" @default.
- W2019936070 magId "2019936070" @default.
- W2019936070 workType "article" @default.