Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019936550> ?p ?o ?g. }
- W2019936550 endingPage "563" @default.
- W2019936550 startingPage "545" @default.
- W2019936550 abstract "ABSTRACT: The performance of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) models in simulating hydrologic response was assessed in an agricultural watershed in southeastern Pennsylvania. All of the performance evaluation measures including Nash‐Sutcliffe coefficient of efficiency (E) and coefficient of determination (R 2 ) suggest that the ANN monthly predictions were closer to the observed flows than the monthly predictions from the SWAT model. More specifically, monthly streamflow E and R 2 were 0.54 and 0.57, respectively, for the SWAT model calibration period, and 0.71 and 0.75, respectively, for the ANN model training period. For the validation period, these values were −0.17 and 0.34 for the SWAT and 0.43 and 0.45 for the ANN model. SWAT model performance was affected by snowmelt events during winter months and by the model's inability to adequately simulate base flows. Even though this and other studies using ANN models suggest that these models provide a viable alternative approach for hydrologic and water quality modeling, ANN models in their current form are not spatially distributed watershed modeling systems. However, considering the promising performance of the simple ANN model, this study suggests that the ANN approach warrants further development to explicitly address the spatial distribution of hydrologic/water quality processes within watersheds." @default.
- W2019936550 created "2016-06-24" @default.
- W2019936550 creator A5021359996 @default.
- W2019936550 creator A5048615839 @default.
- W2019936550 creator A5089960072 @default.
- W2019936550 date "2006-06-01" @default.
- W2019936550 modified "2023-10-09" @default.
- W2019936550 title "COMPARISON OF PROCESS-BASED AND ARTIFICIAL NEURAL NETWORK APPROACHES FOR STREAMFLOW MODELING IN AN AGRICULTURAL WATERSHED" @default.
- W2019936550 cites W1970364817 @default.
- W2019936550 cites W1984710451 @default.
- W2019936550 cites W1989474134 @default.
- W2019936550 cites W1994276995 @default.
- W2019936550 cites W1998442441 @default.
- W2019936550 cites W2008308152 @default.
- W2019936550 cites W2010738418 @default.
- W2019936550 cites W2011412119 @default.
- W2019936550 cites W2024520223 @default.
- W2019936550 cites W2027197837 @default.
- W2019936550 cites W2030268699 @default.
- W2019936550 cites W2031292142 @default.
- W2019936550 cites W2034342537 @default.
- W2019936550 cites W20350900 @default.
- W2019936550 cites W2039629180 @default.
- W2019936550 cites W2046801372 @default.
- W2019936550 cites W2051718657 @default.
- W2019936550 cites W2067733590 @default.
- W2019936550 cites W2074770406 @default.
- W2019936550 cites W2084696946 @default.
- W2019936550 cites W2086573699 @default.
- W2019936550 cites W2094193006 @default.
- W2019936550 cites W2096113236 @default.
- W2019936550 cites W2114526358 @default.
- W2019936550 cites W2117812871 @default.
- W2019936550 cites W2144638471 @default.
- W2019936550 cites W2151941169 @default.
- W2019936550 cites W2160782725 @default.
- W2019936550 cites W2164017619 @default.
- W2019936550 cites W2170262218 @default.
- W2019936550 cites W2174443198 @default.
- W2019936550 cites W2238541200 @default.
- W2019936550 cites W3017323153 @default.
- W2019936550 cites W4237222446 @default.
- W2019936550 cites W4238717354 @default.
- W2019936550 cites W4242212377 @default.
- W2019936550 cites W4300402905 @default.
- W2019936550 cites W76555321 @default.
- W2019936550 doi "https://doi.org/10.1111/j.1752-1688.2006.tb04475.x" @default.
- W2019936550 hasPublicationYear "2006" @default.
- W2019936550 type Work @default.
- W2019936550 sameAs 2019936550 @default.
- W2019936550 citedByCount "85" @default.
- W2019936550 countsByYear W20199365502012 @default.
- W2019936550 countsByYear W20199365502013 @default.
- W2019936550 countsByYear W20199365502014 @default.
- W2019936550 countsByYear W20199365502015 @default.
- W2019936550 countsByYear W20199365502016 @default.
- W2019936550 countsByYear W20199365502017 @default.
- W2019936550 countsByYear W20199365502018 @default.
- W2019936550 countsByYear W20199365502019 @default.
- W2019936550 countsByYear W20199365502020 @default.
- W2019936550 countsByYear W20199365502021 @default.
- W2019936550 countsByYear W20199365502022 @default.
- W2019936550 countsByYear W20199365502023 @default.
- W2019936550 crossrefType "journal-article" @default.
- W2019936550 hasAuthorship W2019936550A5021359996 @default.
- W2019936550 hasAuthorship W2019936550A5048615839 @default.
- W2019936550 hasAuthorship W2019936550A5089960072 @default.
- W2019936550 hasConcept C119857082 @default.
- W2019936550 hasConcept C126197015 @default.
- W2019936550 hasConcept C126645576 @default.
- W2019936550 hasConcept C127313418 @default.
- W2019936550 hasConcept C150547873 @default.
- W2019936550 hasConcept C187320778 @default.
- W2019936550 hasConcept C18903297 @default.
- W2019936550 hasConcept C205649164 @default.
- W2019936550 hasConcept C2780623283 @default.
- W2019936550 hasConcept C2780797713 @default.
- W2019936550 hasConcept C2780852570 @default.
- W2019936550 hasConcept C39432304 @default.
- W2019936550 hasConcept C41008148 @default.
- W2019936550 hasConcept C43632280 @default.
- W2019936550 hasConcept C49204034 @default.
- W2019936550 hasConcept C50644808 @default.
- W2019936550 hasConcept C53739315 @default.
- W2019936550 hasConcept C58640448 @default.
- W2019936550 hasConcept C76886044 @default.
- W2019936550 hasConcept C86803240 @default.
- W2019936550 hasConceptScore W2019936550C119857082 @default.
- W2019936550 hasConceptScore W2019936550C126197015 @default.
- W2019936550 hasConceptScore W2019936550C126645576 @default.
- W2019936550 hasConceptScore W2019936550C127313418 @default.
- W2019936550 hasConceptScore W2019936550C150547873 @default.
- W2019936550 hasConceptScore W2019936550C187320778 @default.
- W2019936550 hasConceptScore W2019936550C18903297 @default.
- W2019936550 hasConceptScore W2019936550C205649164 @default.
- W2019936550 hasConceptScore W2019936550C2780623283 @default.
- W2019936550 hasConceptScore W2019936550C2780797713 @default.
- W2019936550 hasConceptScore W2019936550C2780852570 @default.