Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019942204> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2019942204 abstract "In Micro-CT systems based on optical coupling detectors, the defects of scintillator or CCD-camera would lead to heavy artifacts in reconstructed CT images. Meanwhile, different detector units usually suffer from inhomogeneous response, which also leads to artifacts in the CT images. Detector shifting is a simple and efficient method to remove the artifacts due to inhomogeneous responses of detector units. However, it does not work well for heavy artifacts due to defects in scintillator or CCD. The purpose of this paper is to develop a data preprocessing method to reduce both kinds of artifacts.A hybrid method which involves detector random shifting and data inpainting is proposed to correct the projection data, so as to suppress the artifacts in the reconstructed CT images. The defects in scintillator or CCD-camera lead to data lost in some areas of the projection data. The Criminisi algorithm is employed to recover the lost data. By detector random shifting, the location of the lost data in one view might be shifted away in adjacent views. This feature is utilized to design the search window, such that the best match patch shall be searched across adjacent views. By this way, the best match patches should really enjoy high similarity. As a result, the heavy artifacts due to defects of scintillator or CCD-camera should be suppressed. Furthermore, a multiscale tessellation method is proposed to locate the defects and similarity patches, which makes the Criminisi algorithm very fast.The authors tested the proposed method on both simulated projection data and real projection data. Experiments show that the proposed method could correct the bad data in the projections quite well. Compared to other popular methods, such as linear interpolation, wavelet combining Fourier transform, and TV-inpainting, experimental results suggest that the CT images reconstructed from the preprocessed data sets by our method is significantly better in quality.They have proposed a hybrid method for projection data preprocessing which fits well to typical Micro-CT systems. The hybrid method could suppress the ring artifacts in the reconstructed CT images efficiently, while the spatial resolution is not reduced even with a critical eye." @default.
- W2019942204 created "2016-06-24" @default.
- W2019942204 creator A5004716871 @default.
- W2019942204 creator A5014682904 @default.
- W2019942204 creator A5029360035 @default.
- W2019942204 creator A5075126167 @default.
- W2019942204 date "2013-02-28" @default.
- W2019942204 modified "2023-10-09" @default.
- W2019942204 title "Micro-CT artifacts reduction based on detector random shifting and fast data inpainting" @default.
- W2019942204 cites W1979145115 @default.
- W2019942204 cites W2010680750 @default.
- W2019942204 cites W2040978720 @default.
- W2019942204 cites W2064309976 @default.
- W2019942204 cites W2067291138 @default.
- W2019942204 cites W2073423527 @default.
- W2019942204 cites W2105038642 @default.
- W2019942204 cites W2130762502 @default.
- W2019942204 cites W2156366154 @default.
- W2019942204 cites W2157812230 @default.
- W2019942204 cites W2164860288 @default.
- W2019942204 cites W2295936755 @default.
- W2019942204 cites W2539154361 @default.
- W2019942204 doi "https://doi.org/10.1118/1.4790697" @default.
- W2019942204 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23464294" @default.
- W2019942204 hasPublicationYear "2013" @default.
- W2019942204 type Work @default.
- W2019942204 sameAs 2019942204 @default.
- W2019942204 citedByCount "24" @default.
- W2019942204 countsByYear W20199422042013 @default.
- W2019942204 countsByYear W20199422042014 @default.
- W2019942204 countsByYear W20199422042015 @default.
- W2019942204 countsByYear W20199422042016 @default.
- W2019942204 countsByYear W20199422042017 @default.
- W2019942204 countsByYear W20199422042018 @default.
- W2019942204 countsByYear W20199422042019 @default.
- W2019942204 countsByYear W20199422042020 @default.
- W2019942204 countsByYear W20199422042021 @default.
- W2019942204 countsByYear W20199422042022 @default.
- W2019942204 countsByYear W20199422042023 @default.
- W2019942204 crossrefType "journal-article" @default.
- W2019942204 hasAuthorship W2019942204A5004716871 @default.
- W2019942204 hasAuthorship W2019942204A5014682904 @default.
- W2019942204 hasAuthorship W2019942204A5029360035 @default.
- W2019942204 hasAuthorship W2019942204A5075126167 @default.
- W2019942204 hasConcept C103278499 @default.
- W2019942204 hasConcept C11413529 @default.
- W2019942204 hasConcept C115961682 @default.
- W2019942204 hasConcept C11727466 @default.
- W2019942204 hasConcept C120665830 @default.
- W2019942204 hasConcept C121332964 @default.
- W2019942204 hasConcept C154945302 @default.
- W2019942204 hasConcept C161694136 @default.
- W2019942204 hasConcept C31972630 @default.
- W2019942204 hasConcept C34736171 @default.
- W2019942204 hasConcept C41008148 @default.
- W2019942204 hasConcept C57493831 @default.
- W2019942204 hasConcept C76155785 @default.
- W2019942204 hasConcept C94915269 @default.
- W2019942204 hasConceptScore W2019942204C103278499 @default.
- W2019942204 hasConceptScore W2019942204C11413529 @default.
- W2019942204 hasConceptScore W2019942204C115961682 @default.
- W2019942204 hasConceptScore W2019942204C11727466 @default.
- W2019942204 hasConceptScore W2019942204C120665830 @default.
- W2019942204 hasConceptScore W2019942204C121332964 @default.
- W2019942204 hasConceptScore W2019942204C154945302 @default.
- W2019942204 hasConceptScore W2019942204C161694136 @default.
- W2019942204 hasConceptScore W2019942204C31972630 @default.
- W2019942204 hasConceptScore W2019942204C34736171 @default.
- W2019942204 hasConceptScore W2019942204C41008148 @default.
- W2019942204 hasConceptScore W2019942204C57493831 @default.
- W2019942204 hasConceptScore W2019942204C76155785 @default.
- W2019942204 hasConceptScore W2019942204C94915269 @default.
- W2019942204 hasIssue "3" @default.
- W2019942204 hasLocation W20199422041 @default.
- W2019942204 hasLocation W20199422042 @default.
- W2019942204 hasOpenAccess W2019942204 @default.
- W2019942204 hasPrimaryLocation W20199422041 @default.
- W2019942204 hasRelatedWork W1574999717 @default.
- W2019942204 hasRelatedWork W166251047 @default.
- W2019942204 hasRelatedWork W2020564930 @default.
- W2019942204 hasRelatedWork W2059339452 @default.
- W2019942204 hasRelatedWork W2068162367 @default.
- W2019942204 hasRelatedWork W2093556634 @default.
- W2019942204 hasRelatedWork W2262668847 @default.
- W2019942204 hasRelatedWork W2370766994 @default.
- W2019942204 hasRelatedWork W2794492057 @default.
- W2019942204 hasRelatedWork W2995115364 @default.
- W2019942204 hasVolume "40" @default.
- W2019942204 isParatext "false" @default.
- W2019942204 isRetracted "false" @default.
- W2019942204 magId "2019942204" @default.
- W2019942204 workType "article" @default.