Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019949559> ?p ?o ?g. }
- W2019949559 endingPage "37" @default.
- W2019949559 startingPage "25" @default.
- W2019949559 abstract "Image denoising is a basic procedure of image processing, and the purpose of image denoising is to remove noises entirely and well preserve image boundaries and texture information simultaneously. However, conventional filtering methods easily lead to the loss of texture and details information. This paper proposes a new image denoising method to improve this problem, first proposing a new structure called dual contourlet transform (DCT) which is improved from contourlet transform and dual tree complex wavelet transform (DTCWT). The DCT employs a dual tree Laplacian Pyramid (LP) transform to improve the shift invariance and adopts directional filter banks (DFB) to achieve higher directional selectivity. Compared to other existing structures of multiresolution analysis, the main advantage of the DCT is that it not only possesses the advantages of other structures, but also it has simple structure and easy to implement. The most noteworthy is the redundancy of DCT is 8/3 at most; it is the envy of other existing structures. Second, after studying the distribution of DCT coefficients and the correlation between the interscale and intrascale dependencies, we take this account into denoising and use bivariate threshold function on DCT coefficients. Simulation experiments show that the proposed method achieves better performance than those outstanding denoising algorithms in terms of peak signal-to-noise ratio (PSNR), as well as visual quality. In addition, to verify the validity of our method, we give the difference between the original image and the denoised image that rarely used in other denoising literatures. A new image transform structure with the name of dual contourlet transform (DCT) is presented, which conducted with both dual LP and DFBS.A new image denoising method is developed with using bivariate shrinkage threshold on the coefficients of DCT. It is worth mentioning that it is the first time using bivariate shrinkage threshold on DCT domain.In evaluating process, we use a new measure that the difference between the original image and the denoised image to identify the denoised result, which is rarely used in other denoising literatures." @default.
- W2019949559 created "2016-06-24" @default.
- W2019949559 creator A5042455990 @default.
- W2019949559 creator A5055608769 @default.
- W2019949559 creator A5088823957 @default.
- W2019949559 date "2015-04-01" @default.
- W2019949559 modified "2023-10-16" @default.
- W2019949559 title "Image denoising via bivariate shrinkage function based on a new structure of dual contourlet transform" @default.
- W2019949559 cites W1972201414 @default.
- W2019949559 cites W2018332268 @default.
- W2019949559 cites W2022270721 @default.
- W2019949559 cites W2034934732 @default.
- W2019949559 cites W2037600492 @default.
- W2019949559 cites W2040285002 @default.
- W2019949559 cites W2041209861 @default.
- W2019949559 cites W2053305168 @default.
- W2019949559 cites W2054360077 @default.
- W2019949559 cites W2061829113 @default.
- W2019949559 cites W2066072428 @default.
- W2019949559 cites W2066364337 @default.
- W2019949559 cites W2072124297 @default.
- W2019949559 cites W2096169498 @default.
- W2019949559 cites W2106002835 @default.
- W2019949559 cites W2108597695 @default.
- W2019949559 cites W2111361405 @default.
- W2019949559 cites W2113945798 @default.
- W2019949559 cites W2115799737 @default.
- W2019949559 cites W2117853853 @default.
- W2019949559 cites W2120041316 @default.
- W2019949559 cites W2121561691 @default.
- W2019949559 cites W2128989367 @default.
- W2019949559 cites W2129967410 @default.
- W2019949559 cites W2132680427 @default.
- W2019949559 cites W2152047336 @default.
- W2019949559 cites W2170885533 @default.
- W2019949559 cites W2294576049 @default.
- W2019949559 cites W2321898475 @default.
- W2019949559 doi "https://doi.org/10.1016/j.sigpro.2014.10.017" @default.
- W2019949559 hasPublicationYear "2015" @default.
- W2019949559 type Work @default.
- W2019949559 sameAs 2019949559 @default.
- W2019949559 citedByCount "26" @default.
- W2019949559 countsByYear W20199495592015 @default.
- W2019949559 countsByYear W20199495592016 @default.
- W2019949559 countsByYear W20199495592017 @default.
- W2019949559 countsByYear W20199495592018 @default.
- W2019949559 countsByYear W20199495592019 @default.
- W2019949559 countsByYear W20199495592020 @default.
- W2019949559 crossrefType "journal-article" @default.
- W2019949559 hasAuthorship W2019949559A5042455990 @default.
- W2019949559 hasAuthorship W2019949559A5055608769 @default.
- W2019949559 hasAuthorship W2019949559A5088823957 @default.
- W2019949559 hasConcept C105795698 @default.
- W2019949559 hasConcept C11413529 @default.
- W2019949559 hasConcept C115961682 @default.
- W2019949559 hasConcept C124952713 @default.
- W2019949559 hasConcept C14036430 @default.
- W2019949559 hasConcept C142362112 @default.
- W2019949559 hasConcept C153180895 @default.
- W2019949559 hasConcept C154945302 @default.
- W2019949559 hasConcept C163294075 @default.
- W2019949559 hasConcept C180145272 @default.
- W2019949559 hasConcept C196216189 @default.
- W2019949559 hasConcept C199360897 @default.
- W2019949559 hasConcept C20479862 @default.
- W2019949559 hasConcept C2778029271 @default.
- W2019949559 hasConcept C2780980858 @default.
- W2019949559 hasConcept C2983327147 @default.
- W2019949559 hasConcept C33923547 @default.
- W2019949559 hasConcept C41008148 @default.
- W2019949559 hasConcept C47432892 @default.
- W2019949559 hasConcept C64341305 @default.
- W2019949559 hasConcept C78458016 @default.
- W2019949559 hasConcept C86803240 @default.
- W2019949559 hasConceptScore W2019949559C105795698 @default.
- W2019949559 hasConceptScore W2019949559C11413529 @default.
- W2019949559 hasConceptScore W2019949559C115961682 @default.
- W2019949559 hasConceptScore W2019949559C124952713 @default.
- W2019949559 hasConceptScore W2019949559C14036430 @default.
- W2019949559 hasConceptScore W2019949559C142362112 @default.
- W2019949559 hasConceptScore W2019949559C153180895 @default.
- W2019949559 hasConceptScore W2019949559C154945302 @default.
- W2019949559 hasConceptScore W2019949559C163294075 @default.
- W2019949559 hasConceptScore W2019949559C180145272 @default.
- W2019949559 hasConceptScore W2019949559C196216189 @default.
- W2019949559 hasConceptScore W2019949559C199360897 @default.
- W2019949559 hasConceptScore W2019949559C20479862 @default.
- W2019949559 hasConceptScore W2019949559C2778029271 @default.
- W2019949559 hasConceptScore W2019949559C2780980858 @default.
- W2019949559 hasConceptScore W2019949559C2983327147 @default.
- W2019949559 hasConceptScore W2019949559C33923547 @default.
- W2019949559 hasConceptScore W2019949559C41008148 @default.
- W2019949559 hasConceptScore W2019949559C47432892 @default.
- W2019949559 hasConceptScore W2019949559C64341305 @default.
- W2019949559 hasConceptScore W2019949559C78458016 @default.
- W2019949559 hasConceptScore W2019949559C86803240 @default.
- W2019949559 hasFunder F4320321001 @default.
- W2019949559 hasFunder F4320322880 @default.