Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019960037> ?p ?o ?g. }
- W2019960037 endingPage "107" @default.
- W2019960037 startingPage "91" @default.
- W2019960037 abstract "The lowest-order constrained variational (LOCV) method is applied to calculate the magnetic susceptibility of neutron matter (MSNM) at finite temperature. The wide range of potentials such as the Reid68, the Δ-Reid68 and the Av18 interactions are used as input. It is shown that, the modification of LOCV formalism for the triplet central channels presented in our recent zero temperature MSNM calculation (Modarres et al. (2009) [32]) for the operatorial structure potentials (such as Av18 interaction) has also sizable effect at finite temperature. In this work, we switch off the higher partial waves with J⩾3, and their effect will be reported elsewhere. The predicted MSNM is in agreement with the others methods, such as the Brueckner–Hartree–Fock (BHF) for the Av18 potentials. But as before, it is considerably smaller than the results of mean field approximation based on the Skyrme types interactions, which predict the magnetic phase transition in the neutron matter. So similar to our frozen calculation, no evidence for the ferromagnetic phase is found for the above potentials with J<3 channels. Various quantities such the free energy, the entropy, the effective mass and the channel correlation functions of polarized neutron matter at finite temperature are presented and discussed." @default.
- W2019960037 created "2016-06-24" @default.
- W2019960037 creator A5008830529 @default.
- W2019960037 creator A5049150683 @default.
- W2019960037 date "2010-05-01" @default.
- W2019960037 modified "2023-10-16" @default.
- W2019960037 title "The magnetic susceptibility of neutron matter in the LOCV framework at finite temperature" @default.
- W2019960037 cites W1965558293 @default.
- W2019960037 cites W1967304151 @default.
- W2019960037 cites W1968278659 @default.
- W2019960037 cites W1968440992 @default.
- W2019960037 cites W1968664526 @default.
- W2019960037 cites W1971024203 @default.
- W2019960037 cites W1973689835 @default.
- W2019960037 cites W1974813580 @default.
- W2019960037 cites W1975461206 @default.
- W2019960037 cites W1976448248 @default.
- W2019960037 cites W1977398631 @default.
- W2019960037 cites W1978924392 @default.
- W2019960037 cites W1982898850 @default.
- W2019960037 cites W1985980815 @default.
- W2019960037 cites W1986321649 @default.
- W2019960037 cites W1986550948 @default.
- W2019960037 cites W1991212332 @default.
- W2019960037 cites W1991825104 @default.
- W2019960037 cites W1994629604 @default.
- W2019960037 cites W2000843420 @default.
- W2019960037 cites W2003410521 @default.
- W2019960037 cites W2004141925 @default.
- W2019960037 cites W2004751774 @default.
- W2019960037 cites W2006139780 @default.
- W2019960037 cites W2009440364 @default.
- W2019960037 cites W2012623934 @default.
- W2019960037 cites W2014939986 @default.
- W2019960037 cites W2015172574 @default.
- W2019960037 cites W2015314482 @default.
- W2019960037 cites W2016739263 @default.
- W2019960037 cites W2017536053 @default.
- W2019960037 cites W2018051928 @default.
- W2019960037 cites W2021006982 @default.
- W2019960037 cites W2022998377 @default.
- W2019960037 cites W2027761417 @default.
- W2019960037 cites W2028606410 @default.
- W2019960037 cites W2032415541 @default.
- W2019960037 cites W2038093570 @default.
- W2019960037 cites W2038919420 @default.
- W2019960037 cites W2044584848 @default.
- W2019960037 cites W2045357562 @default.
- W2019960037 cites W2047276824 @default.
- W2019960037 cites W2049281127 @default.
- W2019960037 cites W2049884304 @default.
- W2019960037 cites W2050773679 @default.
- W2019960037 cites W2050777706 @default.
- W2019960037 cites W2053134473 @default.
- W2019960037 cites W2057275599 @default.
- W2019960037 cites W2057910081 @default.
- W2019960037 cites W2061136215 @default.
- W2019960037 cites W2062319820 @default.
- W2019960037 cites W2067652367 @default.
- W2019960037 cites W2067920970 @default.
- W2019960037 cites W2068062073 @default.
- W2019960037 cites W2071489567 @default.
- W2019960037 cites W2074544600 @default.
- W2019960037 cites W2081382383 @default.
- W2019960037 cites W2083570967 @default.
- W2019960037 cites W2090379759 @default.
- W2019960037 cites W2095058704 @default.
- W2019960037 cites W2124319596 @default.
- W2019960037 cites W2157284909 @default.
- W2019960037 cites W3100060538 @default.
- W2019960037 cites W3104743939 @default.
- W2019960037 cites W4239442906 @default.
- W2019960037 cites W4251281741 @default.
- W2019960037 cites W4254945215 @default.
- W2019960037 doi "https://doi.org/10.1016/j.nuclphysa.2010.01.243" @default.
- W2019960037 hasPublicationYear "2010" @default.
- W2019960037 type Work @default.
- W2019960037 sameAs 2019960037 @default.
- W2019960037 citedByCount "7" @default.
- W2019960037 countsByYear W20199600372012 @default.
- W2019960037 countsByYear W20199600372023 @default.
- W2019960037 crossrefType "journal-article" @default.
- W2019960037 hasAuthorship W2019960037A5008830529 @default.
- W2019960037 hasAuthorship W2019960037A5049150683 @default.
- W2019960037 hasConcept C121332964 @default.
- W2019960037 hasConcept C152568617 @default.
- W2019960037 hasConcept C165410206 @default.
- W2019960037 hasConcept C16889073 @default.
- W2019960037 hasConcept C172695262 @default.
- W2019960037 hasConcept C185544564 @default.
- W2019960037 hasConcept C26873012 @default.
- W2019960037 hasConceptScore W2019960037C121332964 @default.
- W2019960037 hasConceptScore W2019960037C152568617 @default.
- W2019960037 hasConceptScore W2019960037C165410206 @default.
- W2019960037 hasConceptScore W2019960037C16889073 @default.
- W2019960037 hasConceptScore W2019960037C172695262 @default.
- W2019960037 hasConceptScore W2019960037C185544564 @default.
- W2019960037 hasConceptScore W2019960037C26873012 @default.