Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019963805> ?p ?o ?g. }
- W2019963805 endingPage "306" @default.
- W2019963805 startingPage "300" @default.
- W2019963805 abstract "The regions at risk of ischemia following cardio-respiratory arrest have not been systematically analysed. This knowledge may be of use in determining the mechanism of ischemic injury at vulnerable sites. The aim of this study is to evaluate the use of principal component analysis to analyse the covariance patterns of hypoxic ischemic injury. The inclusion criteria were: age ≥ 17 years, cardio-respiratory arrest and coma on admission (2003–2011). Regions of ischemic injury were manually segmented on fluid attenuated inversion recovery (FLAIR) and diffusion weighted (DWI) sequences and linearly registered into common stereotaxic coordinate space. Topography of ischemic injury was assessed using principal component analysis (covariance data) and compared qualitatively against current method of topography analysis, the probabilistic method (frequency data). For the probabilistic data, subgroup analyses were performed using t-statistics while for the covariance data, subgroup analyses were performed by calculating the angle between the principle components. To account for bias due to a higher frequency of coma survivors in the studied group, we performed sensitivity analysis by sequentially removing coma survivors such that the final data set contained higher rate of death. Quantitative analysis between these methods could not be performed as they have different units of measurement. Forty one patients were included in this series (mean age ± SD = 51.5 ± 18.9 years). In our probabilistic map, the highest frequency of ischemic injury on the DWI and FLAIR sequences was putamen (0.250), caudate (0.225), temporal lobes (0.175), occipital (0.150) and hippocampus (0.125). The first 6 principal components contained 77.7% of the variance of the data. The first component showed covariance between the deep grey matter nuclei and posterior cortical structures (contains 50.2% of the variance of the data). There was similarity in the findings of the subgroup analyses by the downtime whether it was assessed by t-statistics for probabilistic data or angle between the principal components for the covariance data. The sensitivity analysis showed that the pattern of ischemic injury did not change when the analysis was restricted to patients who died. In conclusion, PCA method has many advantages over probabilistic method. In the context of this dataset, PCA showed covariance between deep grey matter nuclei and the posterior cortical structures whereas the probabilistic map provided complementary information on the frequency of occurrence at these locations." @default.
- W2019963805 created "2016-06-24" @default.
- W2019963805 creator A5016720661 @default.
- W2019963805 creator A5033463577 @default.
- W2019963805 creator A5035071406 @default.
- W2019963805 creator A5048197848 @default.
- W2019963805 creator A5069455483 @default.
- W2019963805 creator A5083373577 @default.
- W2019963805 date "2012-08-01" @default.
- W2019963805 modified "2023-10-16" @default.
- W2019963805 title "Application of principal component analysis to study topography of hypoxic–ischemic brain injury" @default.
- W2019963805 cites W1967329909 @default.
- W2019963805 cites W1973913902 @default.
- W2019963805 cites W1975427503 @default.
- W2019963805 cites W1980371181 @default.
- W2019963805 cites W1981608367 @default.
- W2019963805 cites W2000324256 @default.
- W2019963805 cites W2007487865 @default.
- W2019963805 cites W2009505064 @default.
- W2019963805 cites W2012044907 @default.
- W2019963805 cites W2013367726 @default.
- W2019963805 cites W2024314616 @default.
- W2019963805 cites W2028494482 @default.
- W2019963805 cites W2029889152 @default.
- W2019963805 cites W2056940464 @default.
- W2019963805 cites W2060899536 @default.
- W2019963805 cites W2073641643 @default.
- W2019963805 cites W2079239744 @default.
- W2019963805 cites W2084627999 @default.
- W2019963805 cites W2085518651 @default.
- W2019963805 cites W2093388567 @default.
- W2019963805 cites W2116864589 @default.
- W2019963805 cites W2130457419 @default.
- W2019963805 cites W2130972944 @default.
- W2019963805 cites W2146085830 @default.
- W2019963805 cites W2147923263 @default.
- W2019963805 cites W2152867210 @default.
- W2019963805 cites W2153685828 @default.
- W2019963805 cites W2154642035 @default.
- W2019963805 cites W2160504331 @default.
- W2019963805 cites W2164284286 @default.
- W2019963805 cites W2166662384 @default.
- W2019963805 cites W2169366712 @default.
- W2019963805 cites W2171410202 @default.
- W2019963805 cites W2171793470 @default.
- W2019963805 cites W217199373 @default.
- W2019963805 cites W4241101953 @default.
- W2019963805 doi "https://doi.org/10.1016/j.neuroimage.2012.04.025" @default.
- W2019963805 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22551679" @default.
- W2019963805 hasPublicationYear "2012" @default.
- W2019963805 type Work @default.
- W2019963805 sameAs 2019963805 @default.
- W2019963805 citedByCount "5" @default.
- W2019963805 countsByYear W20199638052015 @default.
- W2019963805 countsByYear W20199638052018 @default.
- W2019963805 countsByYear W20199638052019 @default.
- W2019963805 countsByYear W20199638052020 @default.
- W2019963805 crossrefType "journal-article" @default.
- W2019963805 hasAuthorship W2019963805A5016720661 @default.
- W2019963805 hasAuthorship W2019963805A5033463577 @default.
- W2019963805 hasAuthorship W2019963805A5035071406 @default.
- W2019963805 hasAuthorship W2019963805A5048197848 @default.
- W2019963805 hasAuthorship W2019963805A5069455483 @default.
- W2019963805 hasAuthorship W2019963805A5083373577 @default.
- W2019963805 hasConcept C100136789 @default.
- W2019963805 hasConcept C101070640 @default.
- W2019963805 hasConcept C105795698 @default.
- W2019963805 hasConcept C120665830 @default.
- W2019963805 hasConcept C121332964 @default.
- W2019963805 hasConcept C126838900 @default.
- W2019963805 hasConcept C143409427 @default.
- W2019963805 hasConcept C153180895 @default.
- W2019963805 hasConcept C154945302 @default.
- W2019963805 hasConcept C164705383 @default.
- W2019963805 hasConcept C27438332 @default.
- W2019963805 hasConcept C33923547 @default.
- W2019963805 hasConcept C41008148 @default.
- W2019963805 hasConcept C541997718 @default.
- W2019963805 hasConcept C71924100 @default.
- W2019963805 hasConceptScore W2019963805C100136789 @default.
- W2019963805 hasConceptScore W2019963805C101070640 @default.
- W2019963805 hasConceptScore W2019963805C105795698 @default.
- W2019963805 hasConceptScore W2019963805C120665830 @default.
- W2019963805 hasConceptScore W2019963805C121332964 @default.
- W2019963805 hasConceptScore W2019963805C126838900 @default.
- W2019963805 hasConceptScore W2019963805C143409427 @default.
- W2019963805 hasConceptScore W2019963805C153180895 @default.
- W2019963805 hasConceptScore W2019963805C154945302 @default.
- W2019963805 hasConceptScore W2019963805C164705383 @default.
- W2019963805 hasConceptScore W2019963805C27438332 @default.
- W2019963805 hasConceptScore W2019963805C33923547 @default.
- W2019963805 hasConceptScore W2019963805C41008148 @default.
- W2019963805 hasConceptScore W2019963805C541997718 @default.
- W2019963805 hasConceptScore W2019963805C71924100 @default.
- W2019963805 hasIssue "1" @default.
- W2019963805 hasLocation W20199638051 @default.
- W2019963805 hasLocation W20199638052 @default.
- W2019963805 hasOpenAccess W2019963805 @default.