Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019966409> ?p ?o ?g. }
- W2019966409 endingPage "27" @default.
- W2019966409 startingPage "27" @default.
- W2019966409 abstract "State-of-the-art bottom-up saliency models often assign high saliency values at or near high-contrast edges, whereas people tend to look within the regions delineated by those edges, namely the objects. To resolve this inconsistency, in this work we estimate saliency at the level of coherent image regions. According to object-based attention theory, the human brain groups similar pixels into coherent regions, which are called proto-objects. The saliency of these proto-objects is estimated and incorporated together. As usual, attention is given to the most salient image regions. In this paper we employ state-of-the-art computer vision techniques to implement a proto-object-based model for visual attention. Particularly, a hierarchical image segmentation algorithm is used to extract proto-objects. The two most powerful ways to estimate saliency, rarity-based and contrast-based saliency, are generalized to assess the saliency at the proto-object level. The rarity-based saliency assesses if the proto-object contains rare or outstanding details. The contrast-based saliency estimates how much the proto-object differs from the surroundings. However, not all image regions with high contrast to the surroundings attract human attention. We take this into account by distinguishing between external and internal contrast-based saliency. Where the external contrast-based saliency estimates the difference between the proto-object and the rest of the image, the internal contrast-based saliency estimates the complexity of the proto-object itself. We evaluate the performance of the proposed method and its components on two challenging eye-fixation datasets (Judd, Ehinger, Durand, & Torralba, 2009; Subramanian, Katti, Sebe, Kankanhalli, & Chua, 2010). The results show the importance of rarity-based and both external and internal contrast-based saliency in fixation prediction. Moreover, the comparison with state-of-the-art computational models for visual saliency demonstrates the advantage of proto-objects as units of analysis." @default.
- W2019966409 created "2016-06-24" @default.
- W2019966409 creator A5020938231 @default.
- W2019966409 creator A5027171279 @default.
- W2019966409 creator A5048393526 @default.
- W2019966409 creator A5052299650 @default.
- W2019966409 creator A5071497671 @default.
- W2019966409 date "2013-11-26" @default.
- W2019966409 modified "2023-10-12" @default.
- W2019966409 title "A proto-object-based computational model for visual saliency" @default.
- W2019966409 cites W1566135517 @default.
- W2019966409 cites W1699734612 @default.
- W2019966409 cites W1969258103 @default.
- W2019966409 cites W1972890596 @default.
- W2019966409 cites W1999478155 @default.
- W2019966409 cites W2006201641 @default.
- W2019966409 cites W2006902234 @default.
- W2019966409 cites W2022732461 @default.
- W2019966409 cites W2023718514 @default.
- W2019966409 cites W2032533296 @default.
- W2019966409 cites W2040253108 @default.
- W2019966409 cites W2046863527 @default.
- W2019966409 cites W2048115240 @default.
- W2019966409 cites W2056561178 @default.
- W2019966409 cites W2061376149 @default.
- W2019966409 cites W2065761180 @default.
- W2019966409 cites W2073767010 @default.
- W2019966409 cites W2081816191 @default.
- W2019966409 cites W2081913479 @default.
- W2019966409 cites W2091005670 @default.
- W2019966409 cites W2103666701 @default.
- W2019966409 cites W2109812093 @default.
- W2019966409 cites W2110764733 @default.
- W2019966409 cites W2114587936 @default.
- W2019966409 cites W2117242469 @default.
- W2019966409 cites W2117521847 @default.
- W2019966409 cites W2119228922 @default.
- W2019966409 cites W2121947860 @default.
- W2019966409 cites W2122896223 @default.
- W2019966409 cites W2128272608 @default.
- W2019966409 cites W2129077407 @default.
- W2019966409 cites W2131336001 @default.
- W2019966409 cites W2131605659 @default.
- W2019966409 cites W2133589685 @default.
- W2019966409 cites W2138608979 @default.
- W2019966409 cites W2143938305 @default.
- W2019966409 cites W2148705846 @default.
- W2019966409 cites W2149095485 @default.
- W2019966409 cites W2151103935 @default.
- W2019966409 cites W2151900481 @default.
- W2019966409 cites W2156958005 @default.
- W2019966409 cites W2161469100 @default.
- W2019966409 cites W2165947725 @default.
- W2019966409 cites W4235129407 @default.
- W2019966409 cites W4247555068 @default.
- W2019966409 cites W4248455350 @default.
- W2019966409 cites W4251019013 @default.
- W2019966409 cites W4253407359 @default.
- W2019966409 cites W4256003687 @default.
- W2019966409 doi "https://doi.org/10.1167/13.13.27" @default.
- W2019966409 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24281243" @default.
- W2019966409 hasPublicationYear "2013" @default.
- W2019966409 type Work @default.
- W2019966409 sameAs 2019966409 @default.
- W2019966409 citedByCount "22" @default.
- W2019966409 countsByYear W20199664092014 @default.
- W2019966409 countsByYear W20199664092015 @default.
- W2019966409 countsByYear W20199664092016 @default.
- W2019966409 countsByYear W20199664092017 @default.
- W2019966409 countsByYear W20199664092018 @default.
- W2019966409 countsByYear W20199664092020 @default.
- W2019966409 countsByYear W20199664092021 @default.
- W2019966409 countsByYear W20199664092022 @default.
- W2019966409 countsByYear W20199664092023 @default.
- W2019966409 crossrefType "journal-article" @default.
- W2019966409 hasAuthorship W2019966409A5020938231 @default.
- W2019966409 hasAuthorship W2019966409A5027171279 @default.
- W2019966409 hasAuthorship W2019966409A5048393526 @default.
- W2019966409 hasAuthorship W2019966409A5052299650 @default.
- W2019966409 hasAuthorship W2019966409A5071497671 @default.
- W2019966409 hasBestOaLocation W20199664091 @default.
- W2019966409 hasConcept C104317684 @default.
- W2019966409 hasConcept C115961682 @default.
- W2019966409 hasConcept C146249460 @default.
- W2019966409 hasConcept C153180895 @default.
- W2019966409 hasConcept C154945302 @default.
- W2019966409 hasConcept C160633673 @default.
- W2019966409 hasConcept C202227193 @default.
- W2019966409 hasConcept C2776502983 @default.
- W2019966409 hasConcept C2779679900 @default.
- W2019966409 hasConcept C2780719617 @default.
- W2019966409 hasConcept C2781238097 @default.
- W2019966409 hasConcept C2984178911 @default.
- W2019966409 hasConcept C31972630 @default.
- W2019966409 hasConcept C41008148 @default.
- W2019966409 hasConcept C55493867 @default.
- W2019966409 hasConcept C86803240 @default.
- W2019966409 hasConcept C89600930 @default.