Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019979132> ?p ?o ?g. }
- W2019979132 endingPage "043126" @default.
- W2019979132 startingPage "043126" @default.
- W2019979132 abstract "In this paper, the problems of global dissipativity and global exponential dissipativity are investigated for uncertain neural networks with discrete time-varying delay and distributed time-varying delay as well as general activation functions. By constructing appropriate Lyapunov–Krasovskii functionals and employing Newton–Leibniz formulation and linear matrix inequality (LMI) technique, several new criteria for checking the global dissipativity and global exponential dissipativity of the addressed neural networks are established in terms of LMI, which can be checked numerically using the effective LMI toolbox in MATLAB. Illustrated examples are given to show the effectiveness and decreased conservatism of the proposed criteria in comparison with some existing results. It is noteworthy that the traditional assumptions on the differentiability of the time-varying delays and the boundedness of its derivative are removed." @default.
- W2019979132 created "2016-06-24" @default.
- W2019979132 creator A5047077749 @default.
- W2019979132 creator A5078311909 @default.
- W2019979132 date "2008-12-01" @default.
- W2019979132 modified "2023-09-23" @default.
- W2019979132 title "Global dissipativity analysis on uncertain neural networks with mixed time-varying delays" @default.
- W2019979132 cites W1967914652 @default.
- W2019979132 cites W1972262258 @default.
- W2019979132 cites W1972490036 @default.
- W2019979132 cites W1976135411 @default.
- W2019979132 cites W1987898991 @default.
- W2019979132 cites W1987910254 @default.
- W2019979132 cites W1992125110 @default.
- W2019979132 cites W2001200079 @default.
- W2019979132 cites W2004928565 @default.
- W2019979132 cites W2005315237 @default.
- W2019979132 cites W2010374422 @default.
- W2019979132 cites W2011073350 @default.
- W2019979132 cites W2015992137 @default.
- W2019979132 cites W2024906608 @default.
- W2019979132 cites W2034001765 @default.
- W2019979132 cites W2034961042 @default.
- W2019979132 cites W2037460772 @default.
- W2019979132 cites W2048455869 @default.
- W2019979132 cites W2051898177 @default.
- W2019979132 cites W2052044303 @default.
- W2019979132 cites W2057147496 @default.
- W2019979132 cites W2057365975 @default.
- W2019979132 cites W2059311322 @default.
- W2019979132 cites W2066931881 @default.
- W2019979132 cites W2070496333 @default.
- W2019979132 cites W2078259273 @default.
- W2019979132 cites W2080615176 @default.
- W2019979132 cites W2090201174 @default.
- W2019979132 cites W2091423367 @default.
- W2019979132 cites W2101879828 @default.
- W2019979132 cites W2107359293 @default.
- W2019979132 cites W2112056482 @default.
- W2019979132 cites W2123539377 @default.
- W2019979132 cites W2126341830 @default.
- W2019979132 cites W2150534501 @default.
- W2019979132 cites W2152361984 @default.
- W2019979132 cites W2162670370 @default.
- W2019979132 doi "https://doi.org/10.1063/1.3041151" @default.
- W2019979132 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19123636" @default.
- W2019979132 hasPublicationYear "2008" @default.
- W2019979132 type Work @default.
- W2019979132 sameAs 2019979132 @default.
- W2019979132 citedByCount "40" @default.
- W2019979132 countsByYear W20199791322012 @default.
- W2019979132 countsByYear W20199791322013 @default.
- W2019979132 countsByYear W20199791322014 @default.
- W2019979132 countsByYear W20199791322015 @default.
- W2019979132 countsByYear W20199791322016 @default.
- W2019979132 countsByYear W20199791322017 @default.
- W2019979132 countsByYear W20199791322018 @default.
- W2019979132 countsByYear W20199791322019 @default.
- W2019979132 countsByYear W20199791322020 @default.
- W2019979132 countsByYear W20199791322022 @default.
- W2019979132 crossrefType "journal-article" @default.
- W2019979132 hasAuthorship W2019979132A5047077749 @default.
- W2019979132 hasAuthorship W2019979132A5078311909 @default.
- W2019979132 hasConcept C111919701 @default.
- W2019979132 hasConcept C121332964 @default.
- W2019979132 hasConcept C126255220 @default.
- W2019979132 hasConcept C134306372 @default.
- W2019979132 hasConcept C154945302 @default.
- W2019979132 hasConcept C158622935 @default.
- W2019979132 hasConcept C167964875 @default.
- W2019979132 hasConcept C17685861 @default.
- W2019979132 hasConcept C201829737 @default.
- W2019979132 hasConcept C202615002 @default.
- W2019979132 hasConcept C2775924081 @default.
- W2019979132 hasConcept C2780365114 @default.
- W2019979132 hasConcept C28826006 @default.
- W2019979132 hasConcept C33923547 @default.
- W2019979132 hasConcept C41008148 @default.
- W2019979132 hasConcept C47446073 @default.
- W2019979132 hasConcept C50644808 @default.
- W2019979132 hasConcept C62520636 @default.
- W2019979132 hasConceptScore W2019979132C111919701 @default.
- W2019979132 hasConceptScore W2019979132C121332964 @default.
- W2019979132 hasConceptScore W2019979132C126255220 @default.
- W2019979132 hasConceptScore W2019979132C134306372 @default.
- W2019979132 hasConceptScore W2019979132C154945302 @default.
- W2019979132 hasConceptScore W2019979132C158622935 @default.
- W2019979132 hasConceptScore W2019979132C167964875 @default.
- W2019979132 hasConceptScore W2019979132C17685861 @default.
- W2019979132 hasConceptScore W2019979132C201829737 @default.
- W2019979132 hasConceptScore W2019979132C202615002 @default.
- W2019979132 hasConceptScore W2019979132C2775924081 @default.
- W2019979132 hasConceptScore W2019979132C2780365114 @default.
- W2019979132 hasConceptScore W2019979132C28826006 @default.
- W2019979132 hasConceptScore W2019979132C33923547 @default.
- W2019979132 hasConceptScore W2019979132C41008148 @default.
- W2019979132 hasConceptScore W2019979132C47446073 @default.
- W2019979132 hasConceptScore W2019979132C50644808 @default.