Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019985064> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2019985064 abstract "We study the problem of efficient processing of kNN joins over high-dimensional data streams, which is an operation required by many big data applications. Specifically, we are concerned with the continuous evaluation of a set of k nearest neighbor queries Q on streams of high-dimensional items at consecutive snapshots of those streams. While one possible solution is to evaluate the kNN joins starting from scratch at each snapshot, it is too expensive for large volumes of data we encounter in big data applications. We consider the data stream on a time window and maintain the join results for Q at every snapshot in main memory. Our approach to this problem is to build indexes on Q, and only update the results of the queries affected by the changes in the streams at each snapshot. We propose a main-memory structure called the High-dimensional R-tree (HDR-tree) to index the queries, which is efficient in finding affected queries with reasonable maintenance cost. HDR-tree takes advantage of the benefit of clustering and the principle component analysis (PCA) technique. Preliminary experimental results show that our index structures significantly outperform baseline methods." @default.
- W2019985064 created "2016-06-24" @default.
- W2019985064 creator A5011724758 @default.
- W2019985064 creator A5071285426 @default.
- W2019985064 creator A5078965673 @default.
- W2019985064 date "2014-06-01" @default.
- W2019985064 modified "2023-09-25" @default.
- W2019985064 title "Towards Efficient KNN Joins on Data Streams" @default.
- W2019985064 cites W1987403831 @default.
- W2019985064 cites W2007972815 @default.
- W2019985064 cites W2016854254 @default.
- W2019985064 cites W2147487158 @default.
- W2019985064 cites W2171744805 @default.
- W2019985064 doi "https://doi.org/10.1109/bigdata.congress.2014.121" @default.
- W2019985064 hasPublicationYear "2014" @default.
- W2019985064 type Work @default.
- W2019985064 sameAs 2019985064 @default.
- W2019985064 citedByCount "4" @default.
- W2019985064 countsByYear W20199850642017 @default.
- W2019985064 countsByYear W20199850642019 @default.
- W2019985064 countsByYear W20199850642022 @default.
- W2019985064 crossrefType "proceedings-article" @default.
- W2019985064 hasAuthorship W2019985064A5011724758 @default.
- W2019985064 hasAuthorship W2019985064A5071285426 @default.
- W2019985064 hasAuthorship W2019985064A5078965673 @default.
- W2019985064 hasConcept C124101348 @default.
- W2019985064 hasConcept C154945302 @default.
- W2019985064 hasConcept C199360897 @default.
- W2019985064 hasConcept C2778692605 @default.
- W2019985064 hasConcept C41008148 @default.
- W2019985064 hasConcept C55282118 @default.
- W2019985064 hasConcept C73555534 @default.
- W2019985064 hasConcept C75684735 @default.
- W2019985064 hasConcept C77088390 @default.
- W2019985064 hasConcept C89198739 @default.
- W2019985064 hasConceptScore W2019985064C124101348 @default.
- W2019985064 hasConceptScore W2019985064C154945302 @default.
- W2019985064 hasConceptScore W2019985064C199360897 @default.
- W2019985064 hasConceptScore W2019985064C2778692605 @default.
- W2019985064 hasConceptScore W2019985064C41008148 @default.
- W2019985064 hasConceptScore W2019985064C55282118 @default.
- W2019985064 hasConceptScore W2019985064C73555534 @default.
- W2019985064 hasConceptScore W2019985064C75684735 @default.
- W2019985064 hasConceptScore W2019985064C77088390 @default.
- W2019985064 hasConceptScore W2019985064C89198739 @default.
- W2019985064 hasLocation W20199850641 @default.
- W2019985064 hasOpenAccess W2019985064 @default.
- W2019985064 hasPrimaryLocation W20199850641 @default.
- W2019985064 hasRelatedWork W1583949593 @default.
- W2019985064 hasRelatedWork W1832082785 @default.
- W2019985064 hasRelatedWork W2008316021 @default.
- W2019985064 hasRelatedWork W2036575842 @default.
- W2019985064 hasRelatedWork W2073547112 @default.
- W2019985064 hasRelatedWork W2376797789 @default.
- W2019985064 hasRelatedWork W2518466227 @default.
- W2019985064 hasRelatedWork W2574432753 @default.
- W2019985064 hasRelatedWork W4226091590 @default.
- W2019985064 hasRelatedWork W4312609022 @default.
- W2019985064 isParatext "false" @default.
- W2019985064 isRetracted "false" @default.
- W2019985064 magId "2019985064" @default.
- W2019985064 workType "article" @default.