Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019994221> ?p ?o ?g. }
- W2019994221 endingPage "653" @default.
- W2019994221 startingPage "642" @default.
- W2019994221 abstract "When compared with single gene functional analysis, gene set analysis (GSA) can extract more information from gene expression profiles. Currently, several gene set methods have been proposed, but most of the methods cannot detect gene sets with a large number of minor-effect genes. Here, we propose a novel distance-based gene set analysis method. The distance between two groups of genes with different phenotypes based on gene expression should be larger if a certain gene set is significantly associated with the given phenotype. We calculated the distance between two groups with different phenotypes, estimated the significant P-values using two permutation methods and performed multiple hypothesis testing adjustments. This method was performed on one simulated data set and three real data sets. After a comparison and literature verification, we determined that the gene resampling-based permutation method is more suitable for GSA, and the centroid statistical and average linkage statistical distance methods are efficient, especially in detecting gene sets containing more minor-effect genes. We believe that this distance-based method will assist us in finding functional gene sets that are significantly related to a complex trait. Additionally, we have prepared a simple and publically available Perl and R package ( http://bioinfo.hrbmu.edu.cn/dbgsa or http://cran.r-project.org/web/packages/DBGSA/ )." @default.
- W2019994221 created "2016-06-24" @default.
- W2019994221 creator A5003589632 @default.
- W2019994221 creator A5014679656 @default.
- W2019994221 creator A5029548225 @default.
- W2019994221 creator A5029636776 @default.
- W2019994221 creator A5029756704 @default.
- W2019994221 creator A5030560776 @default.
- W2019994221 creator A5034047362 @default.
- W2019994221 creator A5039728001 @default.
- W2019994221 creator A5046854745 @default.
- W2019994221 creator A5059020636 @default.
- W2019994221 creator A5074562701 @default.
- W2019994221 creator A5079738340 @default.
- W2019994221 creator A5079800756 @default.
- W2019994221 date "2012-07-12" @default.
- W2019994221 modified "2023-10-12" @default.
- W2019994221 title "DBGSA: a novel method of distance-based gene set analysis" @default.
- W2019994221 cites W1488196605 @default.
- W2019994221 cites W1911014954 @default.
- W2019994221 cites W1919353 @default.
- W2019994221 cites W1975321314 @default.
- W2019994221 cites W1975506977 @default.
- W2019994221 cites W1977207335 @default.
- W2019994221 cites W1979481666 @default.
- W2019994221 cites W1985035274 @default.
- W2019994221 cites W1992045522 @default.
- W2019994221 cites W1997792518 @default.
- W2019994221 cites W2015243552 @default.
- W2019994221 cites W2015588918 @default.
- W2019994221 cites W2017973363 @default.
- W2019994221 cites W2019132217 @default.
- W2019994221 cites W2019256890 @default.
- W2019994221 cites W2027895157 @default.
- W2019994221 cites W2031429450 @default.
- W2019994221 cites W2032350023 @default.
- W2019994221 cites W2036789309 @default.
- W2019994221 cites W2038935246 @default.
- W2019994221 cites W2041528518 @default.
- W2019994221 cites W2044138322 @default.
- W2019994221 cites W2044494908 @default.
- W2019994221 cites W2062654555 @default.
- W2019994221 cites W2068011527 @default.
- W2019994221 cites W2079438371 @default.
- W2019994221 cites W2091622760 @default.
- W2019994221 cites W2096312363 @default.
- W2019994221 cites W2096702944 @default.
- W2019994221 cites W2101889545 @default.
- W2019994221 cites W2102555672 @default.
- W2019994221 cites W2102992354 @default.
- W2019994221 cites W2103017472 @default.
- W2019994221 cites W2106658584 @default.
- W2019994221 cites W2106695363 @default.
- W2019994221 cites W2107898102 @default.
- W2019994221 cites W2118013379 @default.
- W2019994221 cites W2118069309 @default.
- W2019994221 cites W2120143950 @default.
- W2019994221 cites W2120162345 @default.
- W2019994221 cites W2121726351 @default.
- W2019994221 cites W2123106337 @default.
- W2019994221 cites W2130410032 @default.
- W2019994221 cites W2131885889 @default.
- W2019994221 cites W2134736660 @default.
- W2019994221 cites W2135230352 @default.
- W2019994221 cites W2141703917 @default.
- W2019994221 cites W2144251626 @default.
- W2019994221 cites W2152274187 @default.
- W2019994221 cites W2155771080 @default.
- W2019994221 cites W2159835316 @default.
- W2019994221 cites W2161027523 @default.
- W2019994221 cites W2165427528 @default.
- W2019994221 cites W2167119716 @default.
- W2019994221 cites W2169154379 @default.
- W2019994221 cites W2171537806 @default.
- W2019994221 cites W2172030256 @default.
- W2019994221 cites W4231613350 @default.
- W2019994221 cites W4254265609 @default.
- W2019994221 doi "https://doi.org/10.1038/jhg.2012.86" @default.
- W2019994221 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22786580" @default.
- W2019994221 hasPublicationYear "2012" @default.
- W2019994221 type Work @default.
- W2019994221 sameAs 2019994221 @default.
- W2019994221 citedByCount "4" @default.
- W2019994221 countsByYear W20199942212013 @default.
- W2019994221 countsByYear W20199942212014 @default.
- W2019994221 countsByYear W20199942212019 @default.
- W2019994221 crossrefType "journal-article" @default.
- W2019994221 hasAuthorship W2019994221A5003589632 @default.
- W2019994221 hasAuthorship W2019994221A5014679656 @default.
- W2019994221 hasAuthorship W2019994221A5029548225 @default.
- W2019994221 hasAuthorship W2019994221A5029636776 @default.
- W2019994221 hasAuthorship W2019994221A5029756704 @default.
- W2019994221 hasAuthorship W2019994221A5030560776 @default.
- W2019994221 hasAuthorship W2019994221A5034047362 @default.
- W2019994221 hasAuthorship W2019994221A5039728001 @default.
- W2019994221 hasAuthorship W2019994221A5046854745 @default.
- W2019994221 hasAuthorship W2019994221A5059020636 @default.
- W2019994221 hasAuthorship W2019994221A5074562701 @default.