Matches in SemOpenAlex for { <https://semopenalex.org/work/W2019995264> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2019995264 abstract "We have developed algorithms for automatic character segmentation in motion pictures which extract automatically and reliably the text in pre-title sequences, credit titles, and closing sequences with title and credits. The algorithms we propose make use of typical characteristics of text in videos in order to enhance segmentation and, consequently, recognition performance. As a result, we get segmented characters from video pictures. These can be parsed by any OCR software. The recognition results of multiple instances of the same character throughout subsequent frames are combined to enhance recognition result and to compute the final output. We have tested our segmentation algorithms in a series of experiments with video clips recorded from television and achieved good segmentation results." @default.
- W2019995264 created "2016-06-24" @default.
- W2019995264 creator A5009744749 @default.
- W2019995264 creator A5086227307 @default.
- W2019995264 date "1996-03-13" @default.
- W2019995264 modified "2023-10-05" @default.
- W2019995264 title "<title>Automatic text recognition in digital videos</title>" @default.
- W2019995264 cites W1492380776 @default.
- W2019995264 cites W1581440571 @default.
- W2019995264 cites W2002811962 @default.
- W2019995264 cites W2003889823 @default.
- W2019995264 cites W2021778442 @default.
- W2019995264 cites W2022582203 @default.
- W2019995264 cites W2115907784 @default.
- W2019995264 cites W2136525436 @default.
- W2019995264 cites W2143786659 @default.
- W2019995264 cites W2145023731 @default.
- W2019995264 cites W2160069326 @default.
- W2019995264 cites W2750744623 @default.
- W2019995264 cites W98769269 @default.
- W2019995264 doi "https://doi.org/10.1117/12.234741" @default.
- W2019995264 hasPublicationYear "1996" @default.
- W2019995264 type Work @default.
- W2019995264 sameAs 2019995264 @default.
- W2019995264 citedByCount "134" @default.
- W2019995264 countsByYear W20199952642012 @default.
- W2019995264 countsByYear W20199952642013 @default.
- W2019995264 countsByYear W20199952642014 @default.
- W2019995264 countsByYear W20199952642015 @default.
- W2019995264 countsByYear W20199952642016 @default.
- W2019995264 countsByYear W20199952642017 @default.
- W2019995264 countsByYear W20199952642019 @default.
- W2019995264 countsByYear W20199952642021 @default.
- W2019995264 crossrefType "proceedings-article" @default.
- W2019995264 hasAuthorship W2019995264A5009744749 @default.
- W2019995264 hasAuthorship W2019995264A5086227307 @default.
- W2019995264 hasConcept C154945302 @default.
- W2019995264 hasConcept C28490314 @default.
- W2019995264 hasConcept C41008148 @default.
- W2019995264 hasConceptScore W2019995264C154945302 @default.
- W2019995264 hasConceptScore W2019995264C28490314 @default.
- W2019995264 hasConceptScore W2019995264C41008148 @default.
- W2019995264 hasLocation W20199952641 @default.
- W2019995264 hasOpenAccess W2019995264 @default.
- W2019995264 hasPrimaryLocation W20199952641 @default.
- W2019995264 hasRelatedWork W2130043461 @default.
- W2019995264 hasRelatedWork W2350741829 @default.
- W2019995264 hasRelatedWork W2358668433 @default.
- W2019995264 hasRelatedWork W2376932109 @default.
- W2019995264 hasRelatedWork W2382290278 @default.
- W2019995264 hasRelatedWork W2390279801 @default.
- W2019995264 hasRelatedWork W2748952813 @default.
- W2019995264 hasRelatedWork W2778699561 @default.
- W2019995264 hasRelatedWork W2899084033 @default.
- W2019995264 hasRelatedWork W2530322880 @default.
- W2019995264 isParatext "false" @default.
- W2019995264 isRetracted "false" @default.
- W2019995264 magId "2019995264" @default.
- W2019995264 workType "article" @default.