Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020001168> ?p ?o ?g. }
- W2020001168 endingPage "1504" @default.
- W2020001168 startingPage "1493" @default.
- W2020001168 abstract "The cerebral cortex is the main target of analysis in many functional magnetic resonance imaging (fMRI) studies. Since only about 20% of the voxels of a typical fMRI data set lie within the cortex, statistical analysis can be restricted to the subset of the voxels obtained after cortex segmentation. While such restriction does not influence conventional univariate statistical tests, it may have a substantial effect on the performance of multivariate methods. Here, we describe a novel approach for data-driven analysis of single-subject fMRI time series that combines techniques for the segmentation and reconstruction of the cortical surface of the brain and the spatial independent component analysis (sICA) of the functional time courses (TCs). We use the mesh of the white matter/gray matter boundary, automatically reconstructed from high-spatial-resolution anatomical MR images, to limit the sICA decomposition of a coregistered functional time series to those voxels which are within a specified region with respect to the cortical sheet (cortex-based ICA, or cbICA). We illustrate our analysis method in the context of fMRI blocked and event-related experimental designs and in an fMRI experiment with perceptually ambiguous stimulation, in which an a priori specification of the stimulation protocol is not possible. A comparison between cbICA and conventional hypothesis-driven statistical methods shows that cortical surface maps and component TCs blindly obtained with cbICA reliably reflect task-related spatiotemporal activation patterns. Furthermore, the advantages of using cbICA when the specification of a temporal model of the expected hemodynamic response is not straightforward are illustrated and discussed. A comparison between cbICA and anatomically unconstrained ICA reveals that — beside reducing computational demand — the cortex-based approach improves the fitting of the ICA model in the gray matter voxels, the separation of cortical components and the estimation of their TCs, particularly in the case of fMRI data sets with a complex spatiotemporal statistical structure." @default.
- W2020001168 created "2016-06-24" @default.
- W2020001168 creator A5000413698 @default.
- W2020001168 creator A5026206233 @default.
- W2020001168 creator A5053703383 @default.
- W2020001168 creator A5073479621 @default.
- W2020001168 date "2004-12-01" @default.
- W2020001168 modified "2023-10-18" @default.
- W2020001168 title "Cortex-based independent component analysis of fMRI time series" @default.
- W2020001168 cites W1969978994 @default.
- W2020001168 cites W1973990950 @default.
- W2020001168 cites W1981591148 @default.
- W2020001168 cites W1985327120 @default.
- W2020001168 cites W1999824728 @default.
- W2020001168 cites W2016444985 @default.
- W2020001168 cites W2021384012 @default.
- W2020001168 cites W2025393157 @default.
- W2020001168 cites W2064287088 @default.
- W2020001168 cites W2066007662 @default.
- W2020001168 cites W2066053111 @default.
- W2020001168 cites W207752236 @default.
- W2020001168 cites W2093793583 @default.
- W2020001168 cites W2099741732 @default.
- W2020001168 cites W2103402739 @default.
- W2020001168 cites W2108384452 @default.
- W2020001168 cites W2115000201 @default.
- W2020001168 cites W2115200497 @default.
- W2020001168 cites W2116799974 @default.
- W2020001168 cites W2117621792 @default.
- W2020001168 cites W2118506738 @default.
- W2020001168 cites W2123499768 @default.
- W2020001168 cites W2123649031 @default.
- W2020001168 cites W2127435725 @default.
- W2020001168 cites W2130671706 @default.
- W2020001168 cites W2141224535 @default.
- W2020001168 cites W2141884607 @default.
- W2020001168 cites W2149067367 @default.
- W2020001168 cites W2150448849 @default.
- W2020001168 cites W2151635492 @default.
- W2020001168 cites W2151721316 @default.
- W2020001168 cites W2170530684 @default.
- W2020001168 doi "https://doi.org/10.1016/j.mri.2004.10.020" @default.
- W2020001168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15707799" @default.
- W2020001168 hasPublicationYear "2004" @default.
- W2020001168 type Work @default.
- W2020001168 sameAs 2020001168 @default.
- W2020001168 citedByCount "96" @default.
- W2020001168 countsByYear W20200011682012 @default.
- W2020001168 countsByYear W20200011682013 @default.
- W2020001168 countsByYear W20200011682014 @default.
- W2020001168 countsByYear W20200011682015 @default.
- W2020001168 countsByYear W20200011682016 @default.
- W2020001168 countsByYear W20200011682017 @default.
- W2020001168 countsByYear W20200011682018 @default.
- W2020001168 countsByYear W20200011682019 @default.
- W2020001168 countsByYear W20200011682021 @default.
- W2020001168 countsByYear W20200011682022 @default.
- W2020001168 crossrefType "journal-article" @default.
- W2020001168 hasAuthorship W2020001168A5000413698 @default.
- W2020001168 hasAuthorship W2020001168A5026206233 @default.
- W2020001168 hasAuthorship W2020001168A5053703383 @default.
- W2020001168 hasAuthorship W2020001168A5073479621 @default.
- W2020001168 hasBestOaLocation W20200011682 @default.
- W2020001168 hasConcept C153180895 @default.
- W2020001168 hasConcept C154945302 @default.
- W2020001168 hasConcept C15744967 @default.
- W2020001168 hasConcept C169760540 @default.
- W2020001168 hasConcept C2779226451 @default.
- W2020001168 hasConcept C41008148 @default.
- W2020001168 hasConcept C51432778 @default.
- W2020001168 hasConcept C54170458 @default.
- W2020001168 hasConcept C89600930 @default.
- W2020001168 hasConceptScore W2020001168C153180895 @default.
- W2020001168 hasConceptScore W2020001168C154945302 @default.
- W2020001168 hasConceptScore W2020001168C15744967 @default.
- W2020001168 hasConceptScore W2020001168C169760540 @default.
- W2020001168 hasConceptScore W2020001168C2779226451 @default.
- W2020001168 hasConceptScore W2020001168C41008148 @default.
- W2020001168 hasConceptScore W2020001168C51432778 @default.
- W2020001168 hasConceptScore W2020001168C54170458 @default.
- W2020001168 hasConceptScore W2020001168C89600930 @default.
- W2020001168 hasIssue "10" @default.
- W2020001168 hasLocation W20200011681 @default.
- W2020001168 hasLocation W20200011682 @default.
- W2020001168 hasLocation W20200011683 @default.
- W2020001168 hasLocation W20200011684 @default.
- W2020001168 hasOpenAccess W2020001168 @default.
- W2020001168 hasPrimaryLocation W20200011681 @default.
- W2020001168 hasRelatedWork W130434222 @default.
- W2020001168 hasRelatedWork W1571086804 @default.
- W2020001168 hasRelatedWork W2013514379 @default.
- W2020001168 hasRelatedWork W2075736256 @default.
- W2020001168 hasRelatedWork W2156571999 @default.
- W2020001168 hasRelatedWork W2157917050 @default.
- W2020001168 hasRelatedWork W2385132419 @default.
- W2020001168 hasRelatedWork W2394704971 @default.
- W2020001168 hasRelatedWork W4206076898 @default.
- W2020001168 hasRelatedWork W4311924646 @default.