Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020002046> ?p ?o ?g. }
- W2020002046 abstract "Despite encouraging progress made by integrating multi-platform data for regulatory network reconstruction, identification of transcriptional regulatory networks remains challenging due to imperfection in current biotechnology and complexity of biological systems. It is important to develop new computational approaches for reliable regulatory network reconstruction, especially those of robustness against noise in gene expression data and 'structural error' (i.e., false connections) in binding data. We propose a new method, namely probabilistic network component analysis (pNCA), to estimate the posterior binding matrix given observed gene expression and binding data. The elements in the binding matrix, instead of taking deterministic binary values, are modeled as unknown Bernoulli random variables that represent the probability of regulation. A novel two-stage Gibbs sampling framework is employed to iteratively estimate both hidden transcription factor activities and the posterior distribution of binding matrix. Numerical simulation on synthetic data has demonstrated improved performance of the proposed method over several existing methods for regulatory network identification. Notably, the robustness of pNCA against 'structural error' in initial binding data is fortified with high tolerance of false negative connections in addition to that of false positive connections. The proposed method has been applied to breast cancer cell line data to reconstruct biologically meaningful regulatory networks, revealing condition-specific regulatory rewiring and important cooperative regulation associated with estrogen signaling and action in breast cancer cells." @default.
- W2020002046 created "2016-06-24" @default.
- W2020002046 creator A5001200228 @default.
- W2020002046 creator A5011450428 @default.
- W2020002046 creator A5020225736 @default.
- W2020002046 creator A5023487576 @default.
- W2020002046 creator A5027357317 @default.
- W2020002046 creator A5058010200 @default.
- W2020002046 date "2013-09-22" @default.
- W2020002046 modified "2023-10-18" @default.
- W2020002046 title "Reconstructing transcriptional regulatory networks by probabilistic network component analysis" @default.
- W2020002046 cites W1511331938 @default.
- W2020002046 cites W1663251599 @default.
- W2020002046 cites W1851422093 @default.
- W2020002046 cites W1983405524 @default.
- W2020002046 cites W2006818766 @default.
- W2020002046 cites W2014630371 @default.
- W2020002046 cites W2014737409 @default.
- W2020002046 cites W2020921095 @default.
- W2020002046 cites W2037330610 @default.
- W2020002046 cites W2053126761 @default.
- W2020002046 cites W2069645361 @default.
- W2020002046 cites W2097090208 @default.
- W2020002046 cites W2112018984 @default.
- W2020002046 cites W2118037512 @default.
- W2020002046 cites W2120893886 @default.
- W2020002046 cites W2121436678 @default.
- W2020002046 cites W2125512776 @default.
- W2020002046 cites W2128374508 @default.
- W2020002046 cites W2134644261 @default.
- W2020002046 cites W2135030836 @default.
- W2020002046 cites W2137385309 @default.
- W2020002046 cites W2142852163 @default.
- W2020002046 cites W2144113133 @default.
- W2020002046 cites W2148541040 @default.
- W2020002046 cites W2151038079 @default.
- W2020002046 cites W2154835728 @default.
- W2020002046 cites W2155669222 @default.
- W2020002046 cites W2168215039 @default.
- W2020002046 cites W2168972202 @default.
- W2020002046 cites W2169318796 @default.
- W2020002046 cites W2170728568 @default.
- W2020002046 cites W2611370172 @default.
- W2020002046 cites W2740984310 @default.
- W2020002046 doi "https://doi.org/10.1145/2506583.2506599" @default.
- W2020002046 hasPublicationYear "2013" @default.
- W2020002046 type Work @default.
- W2020002046 sameAs 2020002046 @default.
- W2020002046 citedByCount "1" @default.
- W2020002046 countsByYear W20200020462015 @default.
- W2020002046 crossrefType "proceedings-article" @default.
- W2020002046 hasAuthorship W2020002046A5001200228 @default.
- W2020002046 hasAuthorship W2020002046A5011450428 @default.
- W2020002046 hasAuthorship W2020002046A5020225736 @default.
- W2020002046 hasAuthorship W2020002046A5023487576 @default.
- W2020002046 hasAuthorship W2020002046A5027357317 @default.
- W2020002046 hasAuthorship W2020002046A5058010200 @default.
- W2020002046 hasConcept C104317684 @default.
- W2020002046 hasConcept C11413529 @default.
- W2020002046 hasConcept C124101348 @default.
- W2020002046 hasConcept C150194340 @default.
- W2020002046 hasConcept C154945302 @default.
- W2020002046 hasConcept C160920958 @default.
- W2020002046 hasConcept C28225019 @default.
- W2020002046 hasConcept C41008148 @default.
- W2020002046 hasConcept C49937458 @default.
- W2020002046 hasConcept C54355233 @default.
- W2020002046 hasConcept C63479239 @default.
- W2020002046 hasConcept C67339327 @default.
- W2020002046 hasConcept C70721500 @default.
- W2020002046 hasConcept C86803240 @default.
- W2020002046 hasConceptScore W2020002046C104317684 @default.
- W2020002046 hasConceptScore W2020002046C11413529 @default.
- W2020002046 hasConceptScore W2020002046C124101348 @default.
- W2020002046 hasConceptScore W2020002046C150194340 @default.
- W2020002046 hasConceptScore W2020002046C154945302 @default.
- W2020002046 hasConceptScore W2020002046C160920958 @default.
- W2020002046 hasConceptScore W2020002046C28225019 @default.
- W2020002046 hasConceptScore W2020002046C41008148 @default.
- W2020002046 hasConceptScore W2020002046C49937458 @default.
- W2020002046 hasConceptScore W2020002046C54355233 @default.
- W2020002046 hasConceptScore W2020002046C63479239 @default.
- W2020002046 hasConceptScore W2020002046C67339327 @default.
- W2020002046 hasConceptScore W2020002046C70721500 @default.
- W2020002046 hasConceptScore W2020002046C86803240 @default.
- W2020002046 hasLocation W20200020461 @default.
- W2020002046 hasOpenAccess W2020002046 @default.
- W2020002046 hasPrimaryLocation W20200020461 @default.
- W2020002046 hasRelatedWork W1710460698 @default.
- W2020002046 hasRelatedWork W2003938058 @default.
- W2020002046 hasRelatedWork W2114466827 @default.
- W2020002046 hasRelatedWork W2133863157 @default.
- W2020002046 hasRelatedWork W2147898386 @default.
- W2020002046 hasRelatedWork W2160562923 @default.
- W2020002046 hasRelatedWork W2205469534 @default.
- W2020002046 hasRelatedWork W2982120224 @default.
- W2020002046 hasRelatedWork W3107156000 @default.
- W2020002046 hasRelatedWork W2278276487 @default.
- W2020002046 isParatext "false" @default.
- W2020002046 isRetracted "false" @default.