Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020008312> ?p ?o ?g. }
- W2020008312 abstract "There are two main approaches to non-equlibrium statistical mechanics: one using stochastic processes and the other using dynamical systems. To model the dynamics during inflation one usually adopts a stochastic description, which is known to suffer from serious conceptual problems. To overcome the problems and/or to gain more insight, we develop a dynamical systems approach. A key assumption that goes into analysis is the chaotic hypothesis, which is a natural generalization of the ergodic hypothesis to non-Hamiltonian systems. The unfamiliar feature for gravitational systems is that the local phase space trajectories can either reproduce or escape due to the presence of cosmological and black hole horizons. We argue that the effect of horizons can be studied using dynamical systems and apply the so-called thermodynamic formalism to derive the equilibrium (or Sinai-Ruelle-Bowen) measure given by a variational principle. We show that the only physical measure is not the Liouville measure (i.e. no entropy problem), but the equilibrium measure (i.e. no measure problem) defined over local trajectories (i.e. no problem of observables) and supported on only infinite trajectories (i.e. no problem of initial conditions). Phenomenological aspects of the fluctuation theorem are discussed." @default.
- W2020008312 created "2016-06-24" @default.
- W2020008312 creator A5017800802 @default.
- W2020008312 date "2012-08-02" @default.
- W2020008312 modified "2023-09-26" @default.
- W2020008312 title "Dynamical systems of eternal inflation: A possible solution to the problems of entropy, measure, observables, and initial conditions" @default.
- W2020008312 cites W1498335665 @default.
- W2020008312 cites W1590390162 @default.
- W2020008312 cites W1968750729 @default.
- W2020008312 cites W1969065851 @default.
- W2020008312 cites W1970421826 @default.
- W2020008312 cites W1974361786 @default.
- W2020008312 cites W1984520658 @default.
- W2020008312 cites W1986721800 @default.
- W2020008312 cites W1988388205 @default.
- W2020008312 cites W1992782626 @default.
- W2020008312 cites W1992960011 @default.
- W2020008312 cites W1994202099 @default.
- W2020008312 cites W1995166953 @default.
- W2020008312 cites W2001652840 @default.
- W2020008312 cites W2002415297 @default.
- W2020008312 cites W2002993626 @default.
- W2020008312 cites W2006951972 @default.
- W2020008312 cites W2008313974 @default.
- W2020008312 cites W2008679932 @default.
- W2020008312 cites W2009991884 @default.
- W2020008312 cites W2011365476 @default.
- W2020008312 cites W2011481255 @default.
- W2020008312 cites W2015861663 @default.
- W2020008312 cites W2020263064 @default.
- W2020008312 cites W2020928280 @default.
- W2020008312 cites W2024250320 @default.
- W2020008312 cites W2026355710 @default.
- W2020008312 cites W2027938121 @default.
- W2020008312 cites W2029803495 @default.
- W2020008312 cites W2032558547 @default.
- W2020008312 cites W2034898285 @default.
- W2020008312 cites W2035433892 @default.
- W2020008312 cites W2039569841 @default.
- W2020008312 cites W2045150277 @default.
- W2020008312 cites W2045897642 @default.
- W2020008312 cites W2052190887 @default.
- W2020008312 cites W2056454305 @default.
- W2020008312 cites W2059260561 @default.
- W2020008312 cites W2063829172 @default.
- W2020008312 cites W2066293254 @default.
- W2020008312 cites W2067079032 @default.
- W2020008312 cites W2072414509 @default.
- W2020008312 cites W2078767194 @default.
- W2020008312 cites W2083597072 @default.
- W2020008312 cites W2084647686 @default.
- W2020008312 cites W2085495509 @default.
- W2020008312 cites W2090438543 @default.
- W2020008312 cites W2094617773 @default.
- W2020008312 cites W2095911190 @default.
- W2020008312 cites W2098001159 @default.
- W2020008312 cites W2102567814 @default.
- W2020008312 cites W2108534226 @default.
- W2020008312 cites W2109592201 @default.
- W2020008312 cites W2110820748 @default.
- W2020008312 cites W2111154120 @default.
- W2020008312 cites W2124942236 @default.
- W2020008312 cites W2125835296 @default.
- W2020008312 cites W2135779038 @default.
- W2020008312 cites W2136341347 @default.
- W2020008312 cites W2147107033 @default.
- W2020008312 cites W2148968450 @default.
- W2020008312 cites W2151285644 @default.
- W2020008312 cites W2152003057 @default.
- W2020008312 cites W2153355780 @default.
- W2020008312 cites W2155374148 @default.
- W2020008312 cites W2162605431 @default.
- W2020008312 cites W2163104504 @default.
- W2020008312 cites W2167153198 @default.
- W2020008312 cites W2169514904 @default.
- W2020008312 cites W2169787170 @default.
- W2020008312 cites W2170307828 @default.
- W2020008312 cites W2170968727 @default.
- W2020008312 cites W2335484446 @default.
- W2020008312 cites W2505589889 @default.
- W2020008312 cites W2595209810 @default.
- W2020008312 cites W3037379377 @default.
- W2020008312 cites W3038066262 @default.
- W2020008312 cites W3098361480 @default.
- W2020008312 cites W3098439458 @default.
- W2020008312 cites W3099140521 @default.
- W2020008312 cites W3099830671 @default.
- W2020008312 cites W3100004924 @default.
- W2020008312 cites W3101792382 @default.
- W2020008312 cites W3102502986 @default.
- W2020008312 cites W3104288443 @default.
- W2020008312 cites W4238113606 @default.
- W2020008312 cites W4252028749 @default.
- W2020008312 cites W4255454912 @default.
- W2020008312 doi "https://doi.org/10.1103/physrevd.86.043502" @default.
- W2020008312 hasPublicationYear "2012" @default.
- W2020008312 type Work @default.
- W2020008312 sameAs 2020008312 @default.
- W2020008312 citedByCount "5" @default.
- W2020008312 countsByYear W20200083122015 @default.