Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020009870> ?p ?o ?g. }
- W2020009870 endingPage "408" @default.
- W2020009870 startingPage "400" @default.
- W2020009870 abstract "We developed a graphical user interface, MATLAB based program to calculate the translational diffusion coefficients in three dimensions for a single diffusing particle, suspended inside a fluid. When the particles are not spherical, in addition to their translational motion also a rotational freedom is considered for them and in addition to the previous translational diffusion coefficients a planar rotational diffusion coefficient can be calculated in this program. Time averaging and ensemble averaging over the particle displacements are taken to calculate the mean square displacement variations in time and so the diffusion coefficients. To monitor the random motion of non-spherical particles a reference frame is used that the particle just have translational motion in it. We call it the body frame that is just like the particle rotates about the z-axis of the lab frame. Some statistical analysis, such as velocity autocorrelation function and histogram of displacements for the particle either in the lab or body frames, are available in the program. Program also calculates theoretical values of the diffusion coefficients for particles of some basic geometrical shapes; sphere, spheroid and cylinder, when other diffusion parameters like temperature and fluid viscosity coefficient can be adjusted. Program title: KOJA Catalogue identifier: AEHK_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEHK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 48 021 No. of bytes in distributed program, including test data, etc.: 1 310 320 Distribution format: tar.gz Programming language: MatLab (MathWorks Inc.) version 7.6 or higher. Statistics Toolbox and Curve Fitting Toolbox required. Computer: Tested on windows and linux, but generally it would work on any computer running MatLab (MathWorks Inc.). There is a bug in windows 7, if the user is not the administrator sometimes the program was not able to overwrite some internal files. Operating system: Any supporting MatLab (MathWorks Inc.) v7.6 or higher. RAM: About eight times that of loaded data Classification: 12 Nature of problem: In many areas of physics, knowing diffusion coefficients is vital and gives useful information about the physical properties of diffusive particles and the environment. In many cases a diffusive particle is not a sphere and has rotation during its movements. In these cases information about a particle's trajectory both in lab and body frame would be useful. Also some statistical analysis is needed to obtain more information about a particle's motion. Solution method: This program tries to gather all required tools to analyse raw data from the Brownian motion of a diffusing particle. Ability to switch between different methods of calculation of mean square displacement to find diffusion coefficients depends on the correlations between data points. There are three methods in the program: time average, ensemble average and their combinations. A linear fit is done to measure Diffusion Coefficient (D), the weight and fraction of data points is controllable. Given physical properties of the system, the program can calculates D theoretically for some basic geometrical shapes; sphere, spheroid and cylinder. In the case of non-spherical particles if data of rotation is available, the code can calculate trajectory and diffusion also in body frame. There are more statistical tools available in the program, such as histogram and autocorrelation function to obtain more information e.g. relaxation time to ideal diffusion motion. Code uses log–log diagram of mean square displacement (MSD) to calculate the amount of deviation from normal diffusion to sub- or super-diffusion. Running time: It is dependent on the input data, but for typical data in the order of mega bytes, it would take tens of minutes." @default.
- W2020009870 created "2016-06-24" @default.
- W2020009870 creator A5020213080 @default.
- W2020009870 creator A5043800089 @default.
- W2020009870 creator A5062798571 @default.
- W2020009870 creator A5080300825 @default.
- W2020009870 date "2011-02-01" @default.
- W2020009870 modified "2023-10-14" @default.
- W2020009870 title "A MATLAB program to calculate translational and rotational diffusion coefficients of a single particle" @default.
- W2020009870 cites W1968921863 @default.
- W2020009870 cites W1972859350 @default.
- W2020009870 cites W1990606922 @default.
- W2020009870 cites W1995676757 @default.
- W2020009870 cites W1996636548 @default.
- W2020009870 cites W1997663589 @default.
- W2020009870 cites W2022021506 @default.
- W2020009870 cites W2024509320 @default.
- W2020009870 cites W2028934933 @default.
- W2020009870 cites W2032706441 @default.
- W2020009870 cites W2035087998 @default.
- W2020009870 cites W2035353203 @default.
- W2020009870 cites W2036238089 @default.
- W2020009870 cites W2040016140 @default.
- W2020009870 cites W2047167799 @default.
- W2020009870 cites W2054740941 @default.
- W2020009870 cites W2056403478 @default.
- W2020009870 cites W2058241222 @default.
- W2020009870 cites W2062517214 @default.
- W2020009870 cites W2073805463 @default.
- W2020009870 cites W2077915761 @default.
- W2020009870 cites W2079178937 @default.
- W2020009870 cites W2092364536 @default.
- W2020009870 cites W2097711273 @default.
- W2020009870 cites W2119138025 @default.
- W2020009870 cites W2129482020 @default.
- W2020009870 cites W2130845548 @default.
- W2020009870 cites W2132955511 @default.
- W2020009870 cites W2140514318 @default.
- W2020009870 cites W2147688960 @default.
- W2020009870 cites W2152731693 @default.
- W2020009870 cites W2153335351 @default.
- W2020009870 cites W2162488624 @default.
- W2020009870 cites W2164565944 @default.
- W2020009870 cites W4246712934 @default.
- W2020009870 doi "https://doi.org/10.1016/j.cpc.2010.09.017" @default.
- W2020009870 hasPublicationYear "2011" @default.
- W2020009870 type Work @default.
- W2020009870 sameAs 2020009870 @default.
- W2020009870 citedByCount "17" @default.
- W2020009870 countsByYear W20200098702012 @default.
- W2020009870 countsByYear W20200098702014 @default.
- W2020009870 countsByYear W20200098702015 @default.
- W2020009870 countsByYear W20200098702016 @default.
- W2020009870 countsByYear W20200098702018 @default.
- W2020009870 countsByYear W20200098702019 @default.
- W2020009870 countsByYear W20200098702020 @default.
- W2020009870 countsByYear W20200098702021 @default.
- W2020009870 countsByYear W20200098702022 @default.
- W2020009870 countsByYear W20200098702023 @default.
- W2020009870 crossrefType "journal-article" @default.
- W2020009870 hasAuthorship W2020009870A5020213080 @default.
- W2020009870 hasAuthorship W2020009870A5043800089 @default.
- W2020009870 hasAuthorship W2020009870A5062798571 @default.
- W2020009870 hasAuthorship W2020009870A5080300825 @default.
- W2020009870 hasConcept C111368507 @default.
- W2020009870 hasConcept C120665830 @default.
- W2020009870 hasConcept C121332964 @default.
- W2020009870 hasConcept C127313418 @default.
- W2020009870 hasConcept C2776294167 @default.
- W2020009870 hasConcept C2778517922 @default.
- W2020009870 hasConcept C6342182 @default.
- W2020009870 hasConcept C69357855 @default.
- W2020009870 hasConcept C74650414 @default.
- W2020009870 hasConcept C85725439 @default.
- W2020009870 hasConcept C97355855 @default.
- W2020009870 hasConceptScore W2020009870C111368507 @default.
- W2020009870 hasConceptScore W2020009870C120665830 @default.
- W2020009870 hasConceptScore W2020009870C121332964 @default.
- W2020009870 hasConceptScore W2020009870C127313418 @default.
- W2020009870 hasConceptScore W2020009870C2776294167 @default.
- W2020009870 hasConceptScore W2020009870C2778517922 @default.
- W2020009870 hasConceptScore W2020009870C6342182 @default.
- W2020009870 hasConceptScore W2020009870C69357855 @default.
- W2020009870 hasConceptScore W2020009870C74650414 @default.
- W2020009870 hasConceptScore W2020009870C85725439 @default.
- W2020009870 hasConceptScore W2020009870C97355855 @default.
- W2020009870 hasIssue "2" @default.
- W2020009870 hasLocation W20200098701 @default.
- W2020009870 hasOpenAccess W2020009870 @default.
- W2020009870 hasPrimaryLocation W20200098701 @default.
- W2020009870 hasRelatedWork W1994804482 @default.
- W2020009870 hasRelatedWork W2041449136 @default.
- W2020009870 hasRelatedWork W2043283946 @default.
- W2020009870 hasRelatedWork W208460633 @default.
- W2020009870 hasRelatedWork W2094666442 @default.
- W2020009870 hasRelatedWork W2335031801 @default.
- W2020009870 hasRelatedWork W2789852222 @default.
- W2020009870 hasRelatedWork W2899295067 @default.