Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020032392> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2020032392 abstract "Let G be a graph, and f a one-to-one map of G into the positive integers. The bandwidth ofG is $B(G) = min _f max { {|f(x) - f(y)|:xy in E(G)} }$, where the max is taken over all edges $xy$ in G and the min over all maps f. $B(G)$ is related to the matrix bandwidth $B(M)$ for a symmetric matrix M, and knowledge of the latter parameter is important for the efficient execution of certain matrix operations. The problem of determining $B(G)$ for arbitrary G was shown by Papadimitriou to be NP-complete, and it was subsequently proved NP-complete even when $G in Omega $, where $Omega $ is the set of trees with maximum degree 3. Let $B^ * (G)$ be the minimum possible bandwidth of any subdivision of G, i.e., any graph obtained from G by inserting degree-2 points along edges of G. We present an $O(n)$ algorithm for computing $B^ * (G)$ when $G in Omega $." @default.
- W2020032392 created "2016-06-24" @default.
- W2020032392 creator A5050417811 @default.
- W2020032392 date "1988-10-01" @default.
- W2020032392 modified "2023-09-23" @default.
- W2020032392 title "A Linear Algorithm for Topological Bandwidth in Degree-Three Trees" @default.
- W2020032392 doi "https://doi.org/10.1137/0217064" @default.
- W2020032392 hasPublicationYear "1988" @default.
- W2020032392 type Work @default.
- W2020032392 sameAs 2020032392 @default.
- W2020032392 citedByCount "4" @default.
- W2020032392 countsByYear W20200323922017 @default.
- W2020032392 crossrefType "journal-article" @default.
- W2020032392 hasAuthorship W2020032392A5050417811 @default.
- W2020032392 hasConcept C106487976 @default.
- W2020032392 hasConcept C111208986 @default.
- W2020032392 hasConcept C11413529 @default.
- W2020032392 hasConcept C114614502 @default.
- W2020032392 hasConcept C118615104 @default.
- W2020032392 hasConcept C121332964 @default.
- W2020032392 hasConcept C132525143 @default.
- W2020032392 hasConcept C159985019 @default.
- W2020032392 hasConcept C192562407 @default.
- W2020032392 hasConcept C24890656 @default.
- W2020032392 hasConcept C2775997480 @default.
- W2020032392 hasConcept C2779557605 @default.
- W2020032392 hasConcept C33923547 @default.
- W2020032392 hasConcept C62520636 @default.
- W2020032392 hasConceptScore W2020032392C106487976 @default.
- W2020032392 hasConceptScore W2020032392C111208986 @default.
- W2020032392 hasConceptScore W2020032392C11413529 @default.
- W2020032392 hasConceptScore W2020032392C114614502 @default.
- W2020032392 hasConceptScore W2020032392C118615104 @default.
- W2020032392 hasConceptScore W2020032392C121332964 @default.
- W2020032392 hasConceptScore W2020032392C132525143 @default.
- W2020032392 hasConceptScore W2020032392C159985019 @default.
- W2020032392 hasConceptScore W2020032392C192562407 @default.
- W2020032392 hasConceptScore W2020032392C24890656 @default.
- W2020032392 hasConceptScore W2020032392C2775997480 @default.
- W2020032392 hasConceptScore W2020032392C2779557605 @default.
- W2020032392 hasConceptScore W2020032392C33923547 @default.
- W2020032392 hasConceptScore W2020032392C62520636 @default.
- W2020032392 hasLocation W20200323921 @default.
- W2020032392 hasOpenAccess W2020032392 @default.
- W2020032392 hasPrimaryLocation W20200323921 @default.
- W2020032392 hasRelatedWork W1493358325 @default.
- W2020032392 hasRelatedWork W1541397959 @default.
- W2020032392 hasRelatedWork W1585122964 @default.
- W2020032392 hasRelatedWork W1608829409 @default.
- W2020032392 hasRelatedWork W1980307941 @default.
- W2020032392 hasRelatedWork W2006001074 @default.
- W2020032392 hasRelatedWork W2037576616 @default.
- W2020032392 hasRelatedWork W2048357050 @default.
- W2020032392 hasRelatedWork W2055689533 @default.
- W2020032392 hasRelatedWork W2065527713 @default.
- W2020032392 hasRelatedWork W2082227928 @default.
- W2020032392 hasRelatedWork W2097747425 @default.
- W2020032392 hasRelatedWork W2142542622 @default.
- W2020032392 hasRelatedWork W2295747861 @default.
- W2020032392 hasRelatedWork W2797379022 @default.
- W2020032392 hasRelatedWork W2893083669 @default.
- W2020032392 hasRelatedWork W2950270701 @default.
- W2020032392 hasRelatedWork W2951106886 @default.
- W2020032392 hasRelatedWork W3011535808 @default.
- W2020032392 hasRelatedWork W3082232337 @default.
- W2020032392 isParatext "false" @default.
- W2020032392 isRetracted "false" @default.
- W2020032392 magId "2020032392" @default.
- W2020032392 workType "article" @default.