Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020078097> ?p ?o ?g. }
- W2020078097 endingPage "36" @default.
- W2020078097 startingPage "19" @default.
- W2020078097 abstract "Successful companies are increasingly those companies that excel in the task of extracting knowledge from data. Tapping the source of ‘Big Data’ requires powerful algorithms combined with a strong understanding of the data used. One of the key challenges in predictive analytics is the identification of relevant factors that may explain the variables of interest. In this paper, we present a case study in predictive analytics in which we focus on the selection of relevant exogenous variables. More specifically, we attempt to predict the German electricity spot prices with reference to historical prices and a deep set of weather variables. In order to choose the relevant weather stations, we use the least absolute shrinkage selection operation (LASSO) and random forests to implicitly execute a variable selection. Overall, in our case study of German weather data, we manage to improve forecasting accuracy by up to 16.9% in terms of mean average error." @default.
- W2020078097 created "2016-06-24" @default.
- W2020078097 creator A5064008689 @default.
- W2020078097 creator A5081442873 @default.
- W2020078097 creator A5081705123 @default.
- W2020078097 date "2015-01-02" @default.
- W2020078097 modified "2023-10-18" @default.
- W2020078097 title "Putting Big Data analytics to work: Feature selection for forecasting electricity prices using the LASSO and random forests" @default.
- W2020078097 cites W1500693574 @default.
- W2020078097 cites W1580494864 @default.
- W2020078097 cites W185077138 @default.
- W2020078097 cites W2009573415 @default.
- W2020078097 cites W2024155197 @default.
- W2020078097 cites W2029112049 @default.
- W2020078097 cites W2049986915 @default.
- W2020078097 cites W2064827017 @default.
- W2020078097 cites W2067025886 @default.
- W2020078097 cites W2076987647 @default.
- W2020078097 cites W2080126116 @default.
- W2020078097 cites W2117101278 @default.
- W2020078097 cites W2119479037 @default.
- W2020078097 cites W2126709108 @default.
- W2020078097 cites W2126831543 @default.
- W2020078097 cites W2135046866 @default.
- W2020078097 cites W2141975087 @default.
- W2020078097 cites W2145777288 @default.
- W2020078097 cites W2155419203 @default.
- W2020078097 cites W2185592418 @default.
- W2020078097 cites W2911964244 @default.
- W2020078097 cites W3121154541 @default.
- W2020078097 cites W3124602151 @default.
- W2020078097 cites W3125368445 @default.
- W2020078097 cites W3150796314 @default.
- W2020078097 cites W4244918783 @default.
- W2020078097 cites W4291327732 @default.
- W2020078097 cites W429766147 @default.
- W2020078097 doi "https://doi.org/10.1080/12460125.2015.994290" @default.
- W2020078097 hasPublicationYear "2015" @default.
- W2020078097 type Work @default.
- W2020078097 sameAs 2020078097 @default.
- W2020078097 citedByCount "85" @default.
- W2020078097 countsByYear W20200780972015 @default.
- W2020078097 countsByYear W20200780972016 @default.
- W2020078097 countsByYear W20200780972017 @default.
- W2020078097 countsByYear W20200780972018 @default.
- W2020078097 countsByYear W20200780972019 @default.
- W2020078097 countsByYear W20200780972020 @default.
- W2020078097 countsByYear W20200780972021 @default.
- W2020078097 countsByYear W20200780972022 @default.
- W2020078097 countsByYear W20200780972023 @default.
- W2020078097 crossrefType "journal-article" @default.
- W2020078097 hasAuthorship W2020078097A5064008689 @default.
- W2020078097 hasAuthorship W2020078097A5081442873 @default.
- W2020078097 hasAuthorship W2020078097A5081705123 @default.
- W2020078097 hasBestOaLocation W20200780972 @default.
- W2020078097 hasConcept C111472728 @default.
- W2020078097 hasConcept C116834253 @default.
- W2020078097 hasConcept C119599485 @default.
- W2020078097 hasConcept C119857082 @default.
- W2020078097 hasConcept C124101348 @default.
- W2020078097 hasConcept C127413603 @default.
- W2020078097 hasConcept C136764020 @default.
- W2020078097 hasConcept C138885662 @default.
- W2020078097 hasConcept C148483581 @default.
- W2020078097 hasConcept C149782125 @default.
- W2020078097 hasConcept C162324750 @default.
- W2020078097 hasConcept C169258074 @default.
- W2020078097 hasConcept C206658404 @default.
- W2020078097 hasConcept C2522767166 @default.
- W2020078097 hasConcept C2778136018 @default.
- W2020078097 hasConcept C37616216 @default.
- W2020078097 hasConcept C41008148 @default.
- W2020078097 hasConcept C45804977 @default.
- W2020078097 hasConcept C59822182 @default.
- W2020078097 hasConcept C75684735 @default.
- W2020078097 hasConcept C79158427 @default.
- W2020078097 hasConcept C81917197 @default.
- W2020078097 hasConcept C83209312 @default.
- W2020078097 hasConcept C86803240 @default.
- W2020078097 hasConceptScore W2020078097C111472728 @default.
- W2020078097 hasConceptScore W2020078097C116834253 @default.
- W2020078097 hasConceptScore W2020078097C119599485 @default.
- W2020078097 hasConceptScore W2020078097C119857082 @default.
- W2020078097 hasConceptScore W2020078097C124101348 @default.
- W2020078097 hasConceptScore W2020078097C127413603 @default.
- W2020078097 hasConceptScore W2020078097C136764020 @default.
- W2020078097 hasConceptScore W2020078097C138885662 @default.
- W2020078097 hasConceptScore W2020078097C148483581 @default.
- W2020078097 hasConceptScore W2020078097C149782125 @default.
- W2020078097 hasConceptScore W2020078097C162324750 @default.
- W2020078097 hasConceptScore W2020078097C169258074 @default.
- W2020078097 hasConceptScore W2020078097C206658404 @default.
- W2020078097 hasConceptScore W2020078097C2522767166 @default.
- W2020078097 hasConceptScore W2020078097C2778136018 @default.
- W2020078097 hasConceptScore W2020078097C37616216 @default.
- W2020078097 hasConceptScore W2020078097C41008148 @default.
- W2020078097 hasConceptScore W2020078097C45804977 @default.
- W2020078097 hasConceptScore W2020078097C59822182 @default.