Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020091808> ?p ?o ?g. }
- W2020091808 endingPage "178" @default.
- W2020091808 startingPage "170" @default.
- W2020091808 abstract "The autoregressive (AR) model is widely used in electroencephalogram (EEG) analyses such as waveform fitting, spectrum estimation, and system identification. In real applications, EEGs are inevitably contaminated with unexpected outlier artifacts, and this must be overcome. However, most of the current AR models are based on the L2 norm structure, which exaggerates the outlier effect due to the square property of the L2 norm. In this paper, a novel AR object function is constructed in the Lp (p≤1) norm space with the aim to compress the outlier effects on EEG analysis, and a fast iteration procedure is developed to solve this new AR model. The quantitative evaluation using simulated EEGs with outliers proves that the proposed Lp (p≤1) AR can estimate the AR parameters more robustly than the Yule-Walker, Burg and LS methods, under various simulated outlier conditions. The actual application to the resting EEG recording with ocular artifacts also demonstrates that Lp (p≤1) AR can effectively address the outliers and recover a resting EEG power spectrum that is more consistent with its physiological basis." @default.
- W2020091808 created "2016-06-24" @default.
- W2020091808 creator A5003061872 @default.
- W2020091808 creator A5008142023 @default.
- W2020091808 creator A5012122902 @default.
- W2020091808 creator A5012508461 @default.
- W2020091808 creator A5017427215 @default.
- W2020091808 creator A5018644308 @default.
- W2020091808 creator A5031281022 @default.
- W2020091808 creator A5061204988 @default.
- W2020091808 creator A5065037360 @default.
- W2020091808 creator A5074344655 @default.
- W2020091808 creator A5077760321 @default.
- W2020091808 creator A5082373262 @default.
- W2020091808 date "2015-01-01" @default.
- W2020091808 modified "2023-10-15" @default.
- W2020091808 title "Autoregressive model in the Lp norm space for EEG analysis" @default.
- W2020091808 cites W1916072855 @default.
- W2020091808 cites W1985724928 @default.
- W2020091808 cites W1985963135 @default.
- W2020091808 cites W1992633833 @default.
- W2020091808 cites W1996703612 @default.
- W2020091808 cites W2008277111 @default.
- W2020091808 cites W2025157091 @default.
- W2020091808 cites W2033225291 @default.
- W2020091808 cites W2035700792 @default.
- W2020091808 cites W2038716529 @default.
- W2020091808 cites W2057990756 @default.
- W2020091808 cites W2063294564 @default.
- W2020091808 cites W2068051146 @default.
- W2020091808 cites W2068218501 @default.
- W2020091808 cites W2088549837 @default.
- W2020091808 cites W2095133175 @default.
- W2020091808 cites W2098330912 @default.
- W2020091808 cites W2099509424 @default.
- W2020091808 cites W2101675075 @default.
- W2020091808 cites W2103193379 @default.
- W2020091808 cites W2108833652 @default.
- W2020091808 cites W2128404967 @default.
- W2020091808 cites W2131777119 @default.
- W2020091808 cites W2133746753 @default.
- W2020091808 cites W2151877357 @default.
- W2020091808 cites W2154810622 @default.
- W2020091808 doi "https://doi.org/10.1016/j.jneumeth.2014.11.007" @default.
- W2020091808 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25448380" @default.
- W2020091808 hasPublicationYear "2015" @default.
- W2020091808 type Work @default.
- W2020091808 sameAs 2020091808 @default.
- W2020091808 citedByCount "33" @default.
- W2020091808 countsByYear W20200918082015 @default.
- W2020091808 countsByYear W20200918082016 @default.
- W2020091808 countsByYear W20200918082017 @default.
- W2020091808 countsByYear W20200918082018 @default.
- W2020091808 countsByYear W20200918082019 @default.
- W2020091808 countsByYear W20200918082020 @default.
- W2020091808 countsByYear W20200918082021 @default.
- W2020091808 countsByYear W20200918082022 @default.
- W2020091808 countsByYear W20200918082023 @default.
- W2020091808 crossrefType "journal-article" @default.
- W2020091808 hasAuthorship W2020091808A5003061872 @default.
- W2020091808 hasAuthorship W2020091808A5008142023 @default.
- W2020091808 hasAuthorship W2020091808A5012122902 @default.
- W2020091808 hasAuthorship W2020091808A5012508461 @default.
- W2020091808 hasAuthorship W2020091808A5017427215 @default.
- W2020091808 hasAuthorship W2020091808A5018644308 @default.
- W2020091808 hasAuthorship W2020091808A5031281022 @default.
- W2020091808 hasAuthorship W2020091808A5061204988 @default.
- W2020091808 hasAuthorship W2020091808A5065037360 @default.
- W2020091808 hasAuthorship W2020091808A5074344655 @default.
- W2020091808 hasAuthorship W2020091808A5077760321 @default.
- W2020091808 hasAuthorship W2020091808A5082373262 @default.
- W2020091808 hasConcept C105795698 @default.
- W2020091808 hasConcept C11413529 @default.
- W2020091808 hasConcept C118552586 @default.
- W2020091808 hasConcept C153180895 @default.
- W2020091808 hasConcept C154945302 @default.
- W2020091808 hasConcept C15744967 @default.
- W2020091808 hasConcept C159877910 @default.
- W2020091808 hasConcept C17744445 @default.
- W2020091808 hasConcept C191795146 @default.
- W2020091808 hasConcept C197424946 @default.
- W2020091808 hasConcept C199539241 @default.
- W2020091808 hasConcept C33923547 @default.
- W2020091808 hasConcept C41008148 @default.
- W2020091808 hasConcept C522805319 @default.
- W2020091808 hasConcept C554190296 @default.
- W2020091808 hasConcept C739882 @default.
- W2020091808 hasConcept C76155785 @default.
- W2020091808 hasConcept C79337645 @default.
- W2020091808 hasConceptScore W2020091808C105795698 @default.
- W2020091808 hasConceptScore W2020091808C11413529 @default.
- W2020091808 hasConceptScore W2020091808C118552586 @default.
- W2020091808 hasConceptScore W2020091808C153180895 @default.
- W2020091808 hasConceptScore W2020091808C154945302 @default.
- W2020091808 hasConceptScore W2020091808C15744967 @default.
- W2020091808 hasConceptScore W2020091808C159877910 @default.
- W2020091808 hasConceptScore W2020091808C17744445 @default.
- W2020091808 hasConceptScore W2020091808C191795146 @default.