Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020091852> ?p ?o ?g. }
- W2020091852 endingPage "356" @default.
- W2020091852 startingPage "333" @default.
- W2020091852 abstract "Non-parametric system identification has been widely applied in structural health monitoring and damage detection based on measured response data. However, the presence of noise in the measured data significantly affects the accuracy of structural system identification. A dilemma is that it is not possible to know with any measure of certainty whether and how much the measured data are corrupted by noise. This paper develops a Bayesian discrete wavelet packet transform denoising approach and investigates the effects of noise in the measured data on structural system identification. The denoising approach is based on the integration of Bayesian hypothesis testing and wavelet packet analysis. It avoids the arbitrary selection of threshold required in classical wavelet thresholding methods and considers the uncertainty of noise, thus resulting in more accurate denoising result. Both original and denoised data are used to investigate the effect of noise on structural system identification through error analysis, R2 statistic, and p-value analyses. The methodology is validated using both simulated data and experimental data. A non-parametric system identification method, the fuzzy wavelet neural network model, and experimental data from a 5-storey test steel frame and a 38-storey test concrete structure are employed to investigate the effect of noise on system identification. A comparative study demonstrates that the proposed denoising approach outperforms the wavelet soft thresholding methods. The results of this research provide a robust methodology to denoise the measured data for accurate structural system identification. Copyright © 2006 John Wiley & Sons, Ltd." @default.
- W2020091852 created "2016-06-24" @default.
- W2020091852 creator A5060859546 @default.
- W2020091852 creator A5077441448 @default.
- W2020091852 creator A5089894989 @default.
- W2020091852 date "2007-01-01" @default.
- W2020091852 modified "2023-09-30" @default.
- W2020091852 title "Bayesian wavelet packet denoising for structural system identification" @default.
- W2020091852 cites W1905397622 @default.
- W2020091852 cites W1970459667 @default.
- W2020091852 cites W1972678754 @default.
- W2020091852 cites W1976242466 @default.
- W2020091852 cites W1996268356 @default.
- W2020091852 cites W1996624683 @default.
- W2020091852 cites W2007250360 @default.
- W2020091852 cites W2008148249 @default.
- W2020091852 cites W2008767866 @default.
- W2020091852 cites W2011114765 @default.
- W2020091852 cites W2023872052 @default.
- W2020091852 cites W2031895952 @default.
- W2020091852 cites W2034858236 @default.
- W2020091852 cites W2037083183 @default.
- W2020091852 cites W2043610567 @default.
- W2020091852 cites W2047759278 @default.
- W2020091852 cites W2053772077 @default.
- W2020091852 cites W2061052441 @default.
- W2020091852 cites W2061358509 @default.
- W2020091852 cites W2069353545 @default.
- W2020091852 cites W2083394664 @default.
- W2020091852 cites W2083612784 @default.
- W2020091852 cites W2098914003 @default.
- W2020091852 cites W2101227080 @default.
- W2020091852 cites W2113076747 @default.
- W2020091852 cites W2124553913 @default.
- W2020091852 cites W2140626344 @default.
- W2020091852 cites W2140667604 @default.
- W2020091852 cites W2140957936 @default.
- W2020091852 cites W2147716418 @default.
- W2020091852 cites W2156447271 @default.
- W2020091852 cites W2156706175 @default.
- W2020091852 cites W2158940042 @default.
- W2020091852 cites W4255272544 @default.
- W2020091852 cites W4298352105 @default.
- W2020091852 cites W59771946 @default.
- W2020091852 doi "https://doi.org/10.1002/stc.161" @default.
- W2020091852 hasPublicationYear "2007" @default.
- W2020091852 type Work @default.
- W2020091852 sameAs 2020091852 @default.
- W2020091852 citedByCount "183" @default.
- W2020091852 countsByYear W20200918522012 @default.
- W2020091852 countsByYear W20200918522013 @default.
- W2020091852 countsByYear W20200918522014 @default.
- W2020091852 countsByYear W20200918522015 @default.
- W2020091852 countsByYear W20200918522016 @default.
- W2020091852 countsByYear W20200918522017 @default.
- W2020091852 countsByYear W20200918522018 @default.
- W2020091852 countsByYear W20200918522019 @default.
- W2020091852 countsByYear W20200918522020 @default.
- W2020091852 countsByYear W20200918522021 @default.
- W2020091852 countsByYear W20200918522022 @default.
- W2020091852 countsByYear W20200918522023 @default.
- W2020091852 crossrefType "journal-article" @default.
- W2020091852 hasAuthorship W2020091852A5060859546 @default.
- W2020091852 hasAuthorship W2020091852A5077441448 @default.
- W2020091852 hasAuthorship W2020091852A5089894989 @default.
- W2020091852 hasBestOaLocation W20200918521 @default.
- W2020091852 hasConcept C107673813 @default.
- W2020091852 hasConcept C116834253 @default.
- W2020091852 hasConcept C124101348 @default.
- W2020091852 hasConcept C153180895 @default.
- W2020091852 hasConcept C154945302 @default.
- W2020091852 hasConcept C155777637 @default.
- W2020091852 hasConcept C158379750 @default.
- W2020091852 hasConcept C163294075 @default.
- W2020091852 hasConcept C196216189 @default.
- W2020091852 hasConcept C31258907 @default.
- W2020091852 hasConcept C41008148 @default.
- W2020091852 hasConcept C47432892 @default.
- W2020091852 hasConcept C59822182 @default.
- W2020091852 hasConcept C86803240 @default.
- W2020091852 hasConceptScore W2020091852C107673813 @default.
- W2020091852 hasConceptScore W2020091852C116834253 @default.
- W2020091852 hasConceptScore W2020091852C124101348 @default.
- W2020091852 hasConceptScore W2020091852C153180895 @default.
- W2020091852 hasConceptScore W2020091852C154945302 @default.
- W2020091852 hasConceptScore W2020091852C155777637 @default.
- W2020091852 hasConceptScore W2020091852C158379750 @default.
- W2020091852 hasConceptScore W2020091852C163294075 @default.
- W2020091852 hasConceptScore W2020091852C196216189 @default.
- W2020091852 hasConceptScore W2020091852C31258907 @default.
- W2020091852 hasConceptScore W2020091852C41008148 @default.
- W2020091852 hasConceptScore W2020091852C47432892 @default.
- W2020091852 hasConceptScore W2020091852C59822182 @default.
- W2020091852 hasConceptScore W2020091852C86803240 @default.
- W2020091852 hasIssue "2" @default.
- W2020091852 hasLocation W20200918521 @default.
- W2020091852 hasOpenAccess W2020091852 @default.
- W2020091852 hasPrimaryLocation W20200918521 @default.