Matches in SemOpenAlex for { <https://semopenalex.org/work/W2020104107> ?p ?o ?g. }
- W2020104107 endingPage "43" @default.
- W2020104107 startingPage "29" @default.
- W2020104107 abstract "Retrieving area estimates from broad scale land-cover maps is generally inaccurate due to the effect of spatial aggregation on class proportions. In a previous study, we tested a method to calibrate area estimates of tropical forest cover by inverting a model of the influence of the forest spatial fragmentation on the spatial aggregation bias, as characterized by two nested regression models. This was based on a sample of high resolution land-cover classifications, distributed across the tropical belt. In this study, improvements of this previous model are sought, first, by better accounting for the spatial variability of landscape characteristics using texture measures and, second, by integrating spatial information in the mixed pixel estimator—that is, the modeling of spectral mixtures at the scale of coarse resolution pixels as a function of the proportion of land-cover types. These improvements were tested using NOAA's Advanced Very High Resolution Radiometer data at 1.1 km resolution, Landsat Thematic Mapper-based classifications, and data simulated at the 250 m resolution of the forthcoming Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). The integration of spatial information into a correction model to retrieve fine resolution cover-type proportions from coarse resolution data can improve by up to 35% the reliability of the estimates. The results also demonstrate that the integration of spatial information in the mixed pixel estimator controls for the variability due to different landscape characteristics. This study improves our capability to estimate tropical forest cover from coarse resolution remote sensing data at a global scale." @default.
- W2020104107 created "2016-06-24" @default.
- W2020104107 creator A5060873605 @default.
- W2020104107 date "1997-01-01" @default.
- W2020104107 modified "2023-09-28" @default.
- W2020104107 title "Tropical forest area measured from global land-cover classifications: Inverse calibration models based on spatial textures" @default.
- W2020104107 cites W1588831368 @default.
- W2020104107 cites W1963847539 @default.
- W2020104107 cites W1969176101 @default.
- W2020104107 cites W1975479885 @default.
- W2020104107 cites W1998046114 @default.
- W2020104107 cites W2005823171 @default.
- W2020104107 cites W2008771271 @default.
- W2020104107 cites W2011043501 @default.
- W2020104107 cites W2021447836 @default.
- W2020104107 cites W2039081811 @default.
- W2020104107 cites W2040859008 @default.
- W2020104107 cites W2043476091 @default.
- W2020104107 cites W2050340503 @default.
- W2020104107 cites W2051279908 @default.
- W2020104107 cites W2060972147 @default.
- W2020104107 cites W2082818192 @default.
- W2020104107 cites W2085074852 @default.
- W2020104107 cites W2087463450 @default.
- W2020104107 cites W2090988734 @default.
- W2020104107 cites W2102944224 @default.
- W2020104107 cites W2104588681 @default.
- W2020104107 cites W2109668535 @default.
- W2020104107 cites W2162305105 @default.
- W2020104107 cites W2162363335 @default.
- W2020104107 cites W2164872084 @default.
- W2020104107 cites W2186595681 @default.
- W2020104107 cites W2308548558 @default.
- W2020104107 cites W2411915746 @default.
- W2020104107 cites W242465711 @default.
- W2020104107 cites W2110577485 @default.
- W2020104107 doi "https://doi.org/10.1016/s0034-4257(96)00077-6" @default.
- W2020104107 hasPublicationYear "1997" @default.
- W2020104107 type Work @default.
- W2020104107 sameAs 2020104107 @default.
- W2020104107 citedByCount "54" @default.
- W2020104107 countsByYear W20201041072016 @default.
- W2020104107 countsByYear W20201041072017 @default.
- W2020104107 countsByYear W20201041072018 @default.
- W2020104107 countsByYear W20201041072020 @default.
- W2020104107 crossrefType "journal-article" @default.
- W2020104107 hasAuthorship W2020104107A5060873605 @default.
- W2020104107 hasConcept C127413603 @default.
- W2020104107 hasConcept C146978453 @default.
- W2020104107 hasConcept C147176958 @default.
- W2020104107 hasConcept C154945302 @default.
- W2020104107 hasConcept C158709400 @default.
- W2020104107 hasConcept C159620131 @default.
- W2020104107 hasConcept C160633673 @default.
- W2020104107 hasConcept C18903297 @default.
- W2020104107 hasConcept C19269812 @default.
- W2020104107 hasConcept C205372480 @default.
- W2020104107 hasConcept C205649164 @default.
- W2020104107 hasConcept C2775938548 @default.
- W2020104107 hasConcept C2777007095 @default.
- W2020104107 hasConcept C2777480484 @default.
- W2020104107 hasConcept C2778102629 @default.
- W2020104107 hasConcept C2778755073 @default.
- W2020104107 hasConcept C2780648208 @default.
- W2020104107 hasConcept C31972630 @default.
- W2020104107 hasConcept C39432304 @default.
- W2020104107 hasConcept C41008148 @default.
- W2020104107 hasConcept C4792198 @default.
- W2020104107 hasConcept C58640448 @default.
- W2020104107 hasConcept C62649853 @default.
- W2020104107 hasConcept C86803240 @default.
- W2020104107 hasConcept C93692415 @default.
- W2020104107 hasConceptScore W2020104107C127413603 @default.
- W2020104107 hasConceptScore W2020104107C146978453 @default.
- W2020104107 hasConceptScore W2020104107C147176958 @default.
- W2020104107 hasConceptScore W2020104107C154945302 @default.
- W2020104107 hasConceptScore W2020104107C158709400 @default.
- W2020104107 hasConceptScore W2020104107C159620131 @default.
- W2020104107 hasConceptScore W2020104107C160633673 @default.
- W2020104107 hasConceptScore W2020104107C18903297 @default.
- W2020104107 hasConceptScore W2020104107C19269812 @default.
- W2020104107 hasConceptScore W2020104107C205372480 @default.
- W2020104107 hasConceptScore W2020104107C205649164 @default.
- W2020104107 hasConceptScore W2020104107C2775938548 @default.
- W2020104107 hasConceptScore W2020104107C2777007095 @default.
- W2020104107 hasConceptScore W2020104107C2777480484 @default.
- W2020104107 hasConceptScore W2020104107C2778102629 @default.
- W2020104107 hasConceptScore W2020104107C2778755073 @default.
- W2020104107 hasConceptScore W2020104107C2780648208 @default.
- W2020104107 hasConceptScore W2020104107C31972630 @default.
- W2020104107 hasConceptScore W2020104107C39432304 @default.
- W2020104107 hasConceptScore W2020104107C41008148 @default.
- W2020104107 hasConceptScore W2020104107C4792198 @default.
- W2020104107 hasConceptScore W2020104107C58640448 @default.
- W2020104107 hasConceptScore W2020104107C62649853 @default.
- W2020104107 hasConceptScore W2020104107C86803240 @default.
- W2020104107 hasConceptScore W2020104107C93692415 @default.
- W2020104107 hasIssue "1" @default.